Previously reported dramatic changes in photoelectron angular distributions (PADs) as a function of photoelectron kinetic energy following the ionization of S1 p-difluorobenzene are shown to be explained by a shape resonance in the b(2g) symmetry continuum. The characteristics of this resonance are clearly demonstrated by a theoretical multiple-scattering treatment of the photoionization dynamics. New experimental data are presented which demonstrate an apparent insensitivity of the PADs to both vibrational motion and prepared molecular alignment, however, the calculations suggest that strong alignment effects may nevertheless be recognized in the detail of the comparison with experimental data. The apparent, but unexpected, indifference to vibrational excitation is rationalized by considering the nature of the resonance. The correlation of this shape resonance in the continuum with a virtual pi* antibonding orbital is considered. Because this orbital is characteristic of the benzene ring, the existence of similar resonances in related substituted benzenes is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/1.1927523 | DOI Listing |
R Soc Open Sci
January 2025
Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford OX3 7DQ, UK.
Atrial fibrillation (AF) is the most prevalent clinical arrhythmia, posing significant mortality and morbidity challenges. Outcomes of current catheter ablation treatment strategies are suboptimal, highlighting the need for innovative approaches. A major obstacle lies in the inability to comprehensively assess both structural and functional remodelling in AF.
View Article and Find Full Text PDFEur J Radiol Open
June 2025
Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
Peroneal tendon pathology is common among physically active individuals, with tenosynovitis, tendon subluxation, split tears and rupture. However, diagnosing these conditions, particularly peroneus brevis split tears, is clinically and radiologically challenging. Magnetic resonance imaging (MRI) and ultrasound (US) can sometimes miss split tears.
View Article and Find Full Text PDFAchiral metasurfaces with near-field optical chirality have attracted great attention in molecular sensing and chiral emission control. Here, the circular dichroism (CD) response of an achiral metasurface induced by spatially selective coupling with polymethyl methacrylate (PMMA) molecules is demonstrated. A designed achiral metasurface with a V-shaped resonator exhibits large optical chirality with a strongly dissymmetric distribution under circular polarization.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Synchrotron Soleil, L'Orme des Merisiers, St. Aubin BP48, F-91192 Gif sur Yvette, France.
(1,2)--Aminoindanol and (1,2)--aminoindanol, denoted as -AI and -AI, are diastereoisomer aromatic aminoalcohols differing by the presence of a weak intramolecular hydrogen bond in -AI, which is absent in -AI. They also differ by the number of conformers under supersonic jet conditions, one for -AI and two for -AI. One-photon and resonance-enhanced two-photon photoelectron circular dichroism (PECD) spectra are obtained for the two molecules.
View Article and Find Full Text PDFNanoscale
January 2025
AIT Austrian Institute of Technology, Molecular Diagnostics, 1210 Vienna, Austria.
Metal nanoparticles are established tools for biomedical applications due to their unique optical properties, primarily attributed to localized surface plasmon resonances. They show distinct optical characteristics, such as high extinction cross-sections and resonances at specific wavelengths, which are tunable across the wavelength spectrum by modifying the nanoparticle geometry. These attributes make metal nanoparticles highly valuable for sensing and imaging in biology and medicine.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!