A method for simultaneous analysis of eight azolic fungicides: cyproconazole, diniconazole, tetraconazole, thiabendazole, flusilazole, triadimenol, triadimefon, carbendazim and the degradation product 2-aminobenzimidazole in wine samples is described. The compounds are isolated from the samples and concentrated by solid-phase extraction on polymeric cartridges. The determination is carried out by liquid chromatography with mass spectrometric detection in positive ionization and selected ion monitoring modes. The influence of parameters such as the mobile phase composition, column temperature, corona current and fragmentor voltage is studied and the proposed method is validated. Recoveries of the nine compounds added to wine samples range from 83 to 109%, with relative standard deviations below 10%. The quantitation limits are between 9 and 31 microg/L. Real wine samples are analyzed by the proposed method, also.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chroma.2005.04.044 | DOI Listing |
Methods Mol Biol
January 2025
Department of Food Quality and Nutrition, Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige, Italy.
The final aim of metabolomics is the comprehensive and holistic study of the metabolome in biological samples. Therefore, the use of instruments that enable the analysis of metabolites belonging to various chemical classes in a wide range of concentrations is essential, without compromising on robustness, resolution, sensitivity, specificity, and metabolite annotation. These characteristics are crucial for the analysis of very complex samples, such as wine, whose metabolome is the result of the sum of metabolites derived from grapes, yeast(s), bacteria(s), and chemical or physical modification during winemaking.
View Article and Find Full Text PDFFood Chem X
January 2025
University of Kragujevac, Institute for Information Technologies, Department of Science, Jovana Cvijića Bb, 34000 Kragujevac, Serbia.
The individual (poly)phenols of red wines cultivated in two different Western Balkan wine-growing regions were determined using the HPLC method, while the ABTS and DPPH tests were employed to investigate antioxidant activity. The reduction potential of antioxidants was determined by FRAP assay. Five distinct classes of phenolic compounds, including phenolic acids, flavan-3-ols, flavonols, stilbenes, and anthocyanins, were identified.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, 510665, People's Republic of China.
A simple and rapid colorimetric detection strategy, based on hydrogen bond identification of 6-thioguanine (6-TG) functionalized Au nanoparticles (AuNPs), is proposed for highly selective and sensitive determination of kanamycin (KA). In this strategy, the hydrogen bond interaction between 6-TG and kanamycin induces AuNPs to agglomerate, with a consequent color change of AuNPs from wine red to purple or even blue. The kanamycin concentrations can be quantified by employing UV-vis spectrophotometer.
View Article and Find Full Text PDFMicrobiome
January 2025
Instituto de Investigación de La Viña y El Vino, Escuela de Ingeniería Agraria, Universidad de León, Avenida de Portugal, 41, León, 24009, Spain.
Foods
December 2024
Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy.
Ochratoxin A (OTA) is a mycotoxin, a common contaminant of grapes and their derivatives, such as wine, and classified as possible human carcinogen (group 2B) by the International Agency for Research on Cancer (IARC). is the main producer of OTA in grapes. The stability of the molecule and the poor availability of detoxification systems makes the control of in vineyards the main strategy used to reduce OTA contamination risk.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!