Structures of the cerebral cortex expressing the D2 dopamine receptor subtype (D2) are important sites of action of antipsychotic drugs. It has also been repeatedly suggested that the prefrontal cortex plays a significant role in neuropsychiatric disorders, including schizophrenia. Here, by using single and double immunohistochemical techniques with electron microscopy, we investigated in the primate prefrontal cortex the ultrastructural localization of D2 and we compared it with that of the neuronal calcium sensor-1 (NCS-1), a neuron-specific calcium-binding and D2-interacting protein. D2 immunoreactivity, revealed with preembedding immunoperoxidase in single labeling and with preembedding immunogold for double labeling, was localized in cell bodies with ultrastructural characteristics of both neurons and astroglia. D2 was localized in pre- and postsynaptic structures, including spines and dendrites, and in both excitatory- and inhibitory-like axon terminals. Immunogold labeling revealed peri- and extrasynaptic localization of D2 in postsynaptic structures, whereas extrasynaptic labeling was typically found in boutons. NSC-1 immunoreactivity was abundant in pre- and postsynaptic structures, in which it was also colocalized with D2. With the present strategy (that has high resolution but relatively limited sensitivity), NSC-1 was observed in about 10% of the D2-immunopositive spines and in a lower proportion of D2-immunopositive dendrites and boutons. The data demonstrate the localization of D2 in pre- and postsynaptic as well as extra- and perisynaptic structures of the primate prefrontal cortex. The data also show the coexistence of NCS-1 and D2 at the ultrastructural level. The latter finding suggests a role for NCS-1 in desensitization of D2 in the prefrontal cortex.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cne.20601DOI Listing

Publication Analysis

Top Keywords

prefrontal cortex
20
primate prefrontal
12
pre- postsynaptic
12
postsynaptic structures
12
dopamine receptor
8
neuronal calcium
8
calcium sensor-1
8
cortex
6
prefrontal
5
structures
5

Similar Publications

Background: Studies across multiple addictions have suggested that repetitive transcranial magnetic stimulation (rTMS) applied to the left dorsolateral prefrontal cortex (L-DLPFC) reduces cue-induced-craving (CIC), however there are no studies in treatment seeking participants with cannabis use disorder (CUD). In this secondary analysis of a previously completed trial, we explore whether a multi-session course of rTMS reduces CIC in CUD.

Methods: Seventy-one participants with ≥moderate CUD (age=30.

View Article and Find Full Text PDF

Background: Intermittent theta burst stimulation (iTBS) is an accepted and approved brain stimulation technique to treat patients with treatment-resistant depression.

Aim: Using neuroimaging, this open-label study aimed to predict the response by observing glucose metabolism with the help of 18-FDG PET scan.

Methods: A total of 25 treatment-resistant depression patients received 15 sessions of iTBS on the left dorsolateral prefrontal cortex.

View Article and Find Full Text PDF

Neuroenhancement by repetitive transcranial magnetic stimulation (rTMS) on DLPFC in healthy adults.

Cogn Neurodyn

December 2025

CIPCE, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, North Kargar Ave., Tehran, Iran.

The term "neuroenhancement" describes the enhancement of cognitive function associated with deficiencies resulting from a specific condition. Nevertheless, there is currently no agreed-upon definition for the term "neuroenhancement", and its meaning can change based on the specific research being discussed. As humans, our continual pursuit of expanding our capabilities, encompassing both cognitive and motor skills, has led us to explore various tools.

View Article and Find Full Text PDF

Fatigue-induced incidents in transportation, aerospace, military, and other areas have been on the rise, posing a threat to human life and safety. The determination of fatigue states holds significant importance, especially through reliable and conveniently available physiological indicators. Here, a portable custom-built fNIRS system was used to monitor the fatigue state caused by nap deprivation.

View Article and Find Full Text PDF

Application of virtual reality technology improves the functionality of brain networks in individuals experiencing pain.

World J Clin Cases

January 2025

Department of Psychiatric Internal Medicine, Sunlight Brain Research Center, Hofu 7470066, Yamaguchi, Japan.

Medical procedures are inherently invasive and carry the risk of inducing pain to the mind and body. Recently, efforts have been made to alleviate the discomfort associated with invasive medical procedures through the use of virtual reality (VR) technology. VR has been demonstrated to be an effective treatment for pain associated with medical procedures, as well as for chronic pain conditions for which no effective treatment has been established.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!