The perception of biological motion combines the analysis of form and motion. However, patient observations by Vaina et al. and psychophysical experiments by Beintema and Lappe showed that humans could perceive human movements (a walker) without local image motion information. Here, we examine the specificity of brain regions responsive to a biological motion stimulus without local image motion, using functional magnetic resonance imaging. We used the stimulus from Beintema and Lappe and compared the brain activity with a point-light display that does contain local motion information and was often used in previous studies. Recent imaging studies have identified areas sensitive to biological motion in both the motion-processing and the form-processing pathways of the visual system. We find a similar neuronal network engaged in biological motion perception, but more strongly manifested in form-processing than in motion-processing areas, namely, fusiform-/occipital face area and extrastriate body area.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00001756-200507130-00002 | DOI Listing |
Nat Commun
January 2025
Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali, Punjab, India.
Single-point mutations are pivotal in molecular zoology, shaping functions and influencing genetic diversity and evolution. Here we study three such genetic variants of a mechano-responsive protein, cadherin-23, that uphold the structural integrity of the protein, but showcase distinct genotypes and phenotypes. The variants exhibit subtle differences in transient intra-domain interactions, which in turn affect the anti-correlated motions among the constituent β-strands.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias (INESC-MN), Rua Alves Redol, 1000-029 Lisbon, Portugal.
Point-of-care (PoC) devices offer a promising solution for fast, portable, and easy-to-use diagnostics. These characteristics are particularly relevant in agrifood fields like viticulture where the early detection of plant stresses is crucial to crop yield. Microfluidics, with its low reagent volume requirements, is well-suited for such applications.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Institute of Sport Science, University of Applied Sciences Wiener Neustadt, 2700 Wiener Neustadt, Austria.
Striking velocity is a key performance indicator in striking-based combat sports, such as boxing, Karate, and Taekwondo. This study aims to develop a low-cost, accelerometer-based system to measure kick and punch velocities in combat athletes. Utilizing a low-cost mobile phone in conjunction with the PhyPhox app, acceleration data was collected and analyzed using a custom algorithm.
View Article and Find Full Text PDFMolecules
January 2025
Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry and Chemical Engineering, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Effectively regulating the rotary motions of molecular rotors through external stimuli poses a tremendous challenge. Herein, a new type of molecular rotor based on azobenzene-strapped mixed (phthalocyaninato)(porphyrinato) rare earth triple-decker complex is reported. Electronic absorption and H NMR spectra manifested the reversible isomerization of the rotor between the configuration and the configuration.
View Article and Find Full Text PDFLife (Basel)
January 2025
Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia.
Inorganic pyrophosphatases, or PPases, are ubiquitous enzymes whose activity is necessary for a large number of biosynthetic reactions. The catalytic function of PPases is dependent on certain conformational changes that have been previously characterized based on the comparison of the crystal structures of various complexes. The current work describes the conformational dynamics of a structural model of human mitochondrial pyrophosphatase hPPA2 using molecular dynamics simulation, all-atom principal component analysis, and coarse-grained normal mode analysis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!