The chicken Ig-like receptors (CHIR) have been described as two Ig domain molecules with long cytoplasmic tails containing inhibitory motifs. In this study, we demonstrate that CHIR form a large family, with multiple members showing great sequence variability among members as well as a great diversity in domain organization and properties of the transmembrane and cytoplasmic segments. We characterize various novel receptor types with motifs indicative of inhibitory, activating, or both functions. In addition to the inhibitory receptors with two ITIM, receptors with a single immunoreceptor tyrosine-based switch motif or receptors lacking a cytoplasmic domain were isolated. Activating receptors with a short cytoplasmic domain and a transmembrane arginine assembled with the newly identified chicken FcepsilonRIgamma chain. Three bifunctional receptor types were characterized composed of one or two C2-type Ig-like domains, a transmembrane region with a positively charged residue and combinations of cytoplasmic motifs such as ITIM, immunoreceptor tyrosine-based switch motif, and YXXM. RT-PCR revealed distinct expression patterns of individual CHIR. All receptor types shared a conserved genomic architecture, and in single Ig domain receptors a pseudoexon replaced the second Ig exon. Southern blot analyses with probes specific for the Ig1 domain were indicative of a large multigene family. Of 103 sequences from the Ig1 domain of a single animal, 41 unique sequences were obtained that displayed extensive variability within restricted Ig regions. Fluorescence in situ hybridization localized the CHIR gene cluster to microchromosome 31 and identified this region as orthologous to the human leukocyte receptor complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.175.1.385 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!