The induction of mixed chimerism (MC) is a powerful and effective means to achieve transplantation tolerance in rodent models. Host conditioning with irradiation or cytotoxic drugs has been used in many protocols for chimeric induction across allogeneic barriers. The deletion of alloreactive T cell clones has been described as the main mechanism responsible for the induction of a stable MC. In this study, we demonstrate that a stable MC and skin allograft tolerance can be established across MHC barriers by a noncytotoxic, irradiation-free approach using costimulation blockade plus rapamycin treatment. By using an adoptive transfer model of skin allograft and using specific Vbeta TCR probes, we demonstrated that deletion of donor-reactive cytopathic T cell clones is indeed profound in tolerant hosts. Nonetheless, the challenge of tolerant mixed chimeras with 5 million mononuclear leukocytes (MNL) from naive syngeneic mice was neither able to abolish the stable MC nor to trigger skin allograft rejection, a hallmark of peripheral, not central tolerance. Furthermore, in an adoptive transfer model, MNLs harvested from tolerant hosts significantly inhibited the capacity of naive MNLs to reject same donor, but not third-party, skin allografts. Moreover, when we transplanted skin allografts from stable tolerant chimeras onto syngeneic immune-incompetent mice, graft-infiltrating T cells migrated from the graft site, expanded in the new host, and protected allografts from acute rejection by naive syngeneic MNLs. In this model, both deletional and immunoregulatory mechanisms are active during the induction and/or maintenance of allograft tolerance through creation of MC using a potentially clinically applicable regimen.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4049/jimmunol.175.1.51 | DOI Listing |
Pediatr Allergy Immunol
January 2025
Department of Microbiology, Immunology and Transplantation, Allergy and Immunology Research Group, KU Leuven, Leuven, Belgium.
Background: Type 1 regulatory T (Tr1) cells are critical players in maintaining peripheral tolerance, by producing high IL-10 levels in association with inducible T-cell co-stimulator (ICOS) expression. Whether these cells play a role in naturally acquired baked egg tolerance is unknown.
Objectives: Evaluate frequencies of egg-responsive Tr1 and Th2 cells in egg-allergic children that naturally acquired baked egg tolerance (BET) versus non-egg-allergic (NEA) children.
Transplant Direct
February 2025
Hospital do Rim, Fundação Oswaldo Ramos, São Paulo, Brazil.
Background: Although multifaceted control intervention actions (bundles) are highly effective in reducing the risk of device-related healthcare-associated infections (d-HAIs), no studies have explored their impact on the outcomes of kidney transplant recipients (KTRs) or the extent of risk reduction achievable through the bundle implementation.
Methods: Seven hundred ninety-eight prevalent KTRs admitted to the intensive care unit (ICU) requiring invasive devices were included: 449 patients from the bundle preimplementation period and 349 from the postimplementation period. The primary outcome was mortality within 90 d of ICU admission.
Transplantation
January 2025
Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
Gut Microbes
December 2025
Department of Molecular, Cellular, & Biomedical Sciences, University of New Hampshire, Durham, NH, USA.
The therapeutic benefits of opioids are compromised by the development of analgesic tolerance, which necessitates higher dosing for pain management thereby increasing the liability for drug dependence and addiction. Rodent models indicate opposing roles of the gut microbiota in tolerance: morphine-induced gut dysbiosis exacerbates tolerance, whereas probiotics ameliorate tolerance. Not all individuals develop tolerance, which could be influenced by differences in microbiota, and yet no study design has capitalized upon this natural variation.
View Article and Find Full Text PDFTransplant Rev (Orlando)
January 2025
Laboratory of Ocular Immunology, Transplantation, and Regeneration, Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA. Electronic address:
Immunology depends on maintaining a delicate balance within the human body, and disruptions can result in conditions such as autoimmune diseases, immunodeficiencies, and hypersensitivity reactions. This balance is especially crucial in transplantation immunology, where one of the primary challenges is preventing graft rejection. Such rejection can lead to organ failure, increased patient mortality, and higher healthcare costs due to the limited availability of donor tissues relative to patient needs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!