Invasion of intestinal mucosa of the host by Mycobacterium avium is a critical step in pathogenesis and likely involves several different bacterial proteins, lipids, glycoproteins, and/or glycolipids. Through the screening of an M. avium genomic library in Mycobacterium smegmatis, we have identified a number of M. avium genes that are associated with increased invasion of mucosal epithelial cells. In order to further investigate these genes, we cloned six of them into a plasmid downstream of a strong mycobacterial promoter (L5 mycobacterial phage promoter), resulting in constitutive expression. Bacteria were then evaluated for increased expression and examined for invasion of HT-29 intestinal epithelial cells. The genes identified encode proteins that are similar to (i) M. tuberculosis coenzyme A carboxylase, (ii) M. tuberculosis membrane proteins of unknown function, (iii) M. tuberculosis FadE20, (iv) a Mycobacterium paratuberculosis surface protein, and (v) M. tuberculosis cyclopropane fatty acyl-phopholipid synthase. The constitutive expression of these genes confers to M. avium the ability to invade HT-29 intestinal epithelial cells with a severalfold increase in efficiency compared to both the wild-type M. avium and M. avium containing the vector alone. Using the murine intestinal ligated loop model, it was observed that the constitutive expression of M. avium proteins has a modest impact on the ability to enter the intestinal mucosa when compared with the wild-type control, suggesting that under in vivo conditions these genes are expressed at higher levels. Evaluation of the expression of these invasion-related genes indicated that under conditions similar to the intestinal lumen environment, the genes identified are upregulated. These data suggest that invasion of the intestinal mucosa is an event that requires the participation of several bacterial factors and the expression of the genes that encode them is less observed under standard laboratory growth conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1168615PMC
http://dx.doi.org/10.1128/IAI.73.7.4214-4221.2005DOI Listing

Publication Analysis

Top Keywords

invasion intestinal
12
intestinal mucosa
12
epithelial cells
12
constitutive expression
12
genes
9
avium
8
mycobacterium avium
8
avium genes
8
intestinal
8
ht-29 intestinal
8

Similar Publications

Successful Laparoscopy-Assisted Extirpation of Burkitt's Lymphoma Causing Intestinal Obstruction in a 17-Year-Old Boy.

J Clin Med

December 2024

Department of Pediatric Surgery and Orthopedics, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540142 Târgu Mureș, Romania.

Childhood extranodal B-cell non-Hodgkin's lymphomas are often caused by Burkitt's lymphoma (BL). Treatment usually involves intensive polychemotherapy, and recent prospective trials show significantly improved outcomes. Surgery primarily involves conducting biopsies; ablative interventions are not recommended.

View Article and Find Full Text PDF

Dipeptidyl peptidase 4 is a cofactor for porcine epidemic diarrhea virus infection.

Vet Microbiol

January 2025

College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China. Electronic address:

Porcine epidemic diarrhea virus (PEDV) is a member of the genus Alphacoronavirus in the family Coronaviridae, which has a mortality rate of up to 100 % in neonatal piglets and causes huge economic losses to the pig industry. The target cells of PEDV infection are porcine small intestinal epithelial cells, and the mechanism of PEDV invasion remains unclear. Our study found that dipeptidyl peptidase 4 (DPP4) acts as a cofactor for PEDV infection by promoting PEDV invasion and replication.

View Article and Find Full Text PDF

Background: Fetal midgut volvulus is a rare disease, with a high risk of potentially life-threatening fetal complications.

Purpose: The aim of this study was to retrospectively analyze the imaging findings of fetal midgut volvulus diagnosed by magnetic resonance imaging (MRI) and explore its value in non-invasive prenatal diagnosis.

Methods: A retrospective collection of data from 156 fetuses suspected of intestinal obstruction by ultrasound examination in our hospital was conducted.

View Article and Find Full Text PDF

Postoperative adhesion around nerves sometimes results in sensory and motor dysfunctions. To prevent these disorders, we have developed an electrospun nanofiber sheet incorporating methylcobalamin (MeCbl), an active form of vitamin B12 with anti-inflammatory and neuroregenerative effects. This study aimed to investigate the neuroprotective effects of MeCbl sheets against postoperative adhesion and to compare the effects of MeCbl sheets with those of porcine small intestinal submucosa (SIS) sheets using a rat sciatic nerve adhesion model.

View Article and Find Full Text PDF

The development and homeostasis of intestinal epithelium are mediated by actively proliferating Lgr5+ stem cells, which possess a remarkable self-renewal and differentiation capacity. Recently, our study demonstrated that m6A methylation was essential for the survival of colonic stem cells. Here, we show that METTL3 expression is downregulated in the colon mucosa in ulcerative colitis (UC) patients and strongly associated with the differentiation and maturation of goblet cells during inflammation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!