The need for efficient and controlled delivery is one of the major obstacles to clinical use of gene therapy. In this study, we investigated the use of magnetic resonance imaging-monitored ultrasound (US) to induce expression of luciferase after local injection of the construct Ad-HSP-Luc, an adenoviral vector containing a transgene encoding firefly luciferase under the control of the human hsp70B promoter. The hsp promoter allows induction of the associated transgene only in areas that are subsequently heated after infection. US imaging was used to guide the injection of purified virus into both lobes of the prostates of three beagles. At 48 h after injection, the left lobe of the prostate was heated using a 1.5-MHz US transducer driven by a multichannel radiofrequency system and employing an magnetic resonance imaging guidance system. High levels of luciferase expression were observed only in areas exposed to ultrasonic heating. This study demonstrates the feasibility of using ultrasonic heating to control transgene expression spatially using a minimally-invasive approach.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ultrasmedbio.2005.03.009DOI Listing

Publication Analysis

Top Keywords

ultrasonic heating
12
magnetic resonance
8
mri-guided ultrasonic
4
heating allows
4
allows spatial
4
spatial control
4
control exogenous
4
luciferase
4
exogenous luciferase
4
luciferase canine
4

Similar Publications

Article Synopsis
  • The study focuses on optimizing an ultrasound-assisted ionic liquid extraction (UAILE) method to extract polysaccharides from Crataegus songarica fruits, achieving a 34.37% yield under specific conditions.
  • The optimal extraction settings include an ultrasonic power of 400 W, a temperature of 79 °C, and a relatively high liquid-solid ratio, making it more effective than traditional extraction methods.
  • The extracted polysaccharides, characterized as a heteropolysaccharide with notable antioxidant properties, could have potential applications in the food and pharmaceutical industries.
View Article and Find Full Text PDF

Sweet potatoes are a rich source of nutrients and bioactive compounds, but their quality can be impacted by the drying process. This study investigates the impact of slot jet reattachment (SJR) nozzle and ultrasound (US) combined drying (SJR + US) on sweet potato quality, compared to freeze-drying (FD), SJR drying, and hot air drying (HAD). SJR + US drying at 50 °C closely resembled FD in enhancing quality attributes and outperformed HAD and SJR in key areas such as rehydration, shrinkage ratios, and nutritional composition.

View Article and Find Full Text PDF

The study aimed to prepare complex gels of sonicated quinoa protein (QP) and polysaccharides, comparing the effects of different protein components and pH on gel properties. FTIR analysis demonstrated that the β-structure in protein at pH 7.0 was enhanced by ultrasonic treatment, which could promote the formation of a gel network.

View Article and Find Full Text PDF

Ultrasound-assisted extraction of polysaccharide from Allium chinense G. Don epidermal waste: Evaluation of extraction mechanism, physicochemical properties, and bioactivities.

Ultrason Sonochem

January 2025

Department of Food Nutrition and Health, School of Medicine and Health, Faculty of Life Sciences and Medicine, Harbin Institute of Technology, Harbin 150001, PR China; Zhengzhou Research Institute, Harbin Institute of Technology, Zhengzhou 450003, PR China; National and Local Joint Engineering Laboratory for Synthesis, Transformation and Separation of Extreme Environmental Nutrients, Harbin Institute of Technology, Harbin 150001, PR China. Electronic address:

Allium chinense G. Don waste (ACGD) has an abundance of polysaccharides (ACGDP). Therefore, in this study, a method for extraction of ACGDP from ACGD by ultrasonic-assisted hot water extraction (UAE) based on ultrasonic cleaning equipment was developed.

View Article and Find Full Text PDF

Focused ultrasound (FUS) is a recognized tool that can be used clinically for the thermal ablation of tumors. However, excessive heat can cause side effects on the ultrasound transmission path and normal tissues around the tumor. To address the issue, this work detected for the first time the effect of microscopic heating of nanoparticles under the action of FUS through the luminescence intensity ratio (LIR) and luminescence lifetime of temperature-responsive lanthanide-doped nanoparticles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!