Two unique restriction sites were introduced by site-directed mutagenesis at identical positions in the DNA encoding the dihydrolipoyltransacetylase (E2p) components of the pyruvate dehydrogenase complex from Azotobacter vinelandii and from Escherichia coli. In this manner each DNA chain could be cut into three parts, coding for the lipoyl domain, which consists of three lipoyl subdomains, the binding domain and the core-forming catalytic domain, respectively. Chimeric E2p components were constructed by exchanging the three domains between E2p from A. vinelandii and E. coli on gene level. The six chimeric E2p proteins were expressed and purified from E. coli TG2. All chimeras were catalytically active, 24-subunit E2p proteins. Interactions of the peripheral components E1p and E3 with the wild-type enzymes from A. vinelandii and E. coli and with the chimeric proteins were studied by gel-filtration experiments, analytical ultracentrifugation and reconstitution of the overall activity of the complex. A. vinelandii E3 interacts only with those chimeras that contain the A. vinelandii binding domain, whereas E. coli E3 interacts with all chimeras. Exchange of the lipoyl or catalytic domain did not influence the binding properties of E3. Recognition of E1p depends on the origin of both the binding domain and the catalytic domain. E. coli E1p interacts strongly with those chimeras in which both the binding domain and the catalytic domain were derived from E. coli E2p and weakly with chimeras that contained either the binding domain or the catalytic domain from E. coli E2p. No binding of E. coli E1p was observed when both domains were of A. vinelandii origin. A. vinelandii E1p recognizes E2p from A. vinelandii and E. coli, but strong interaction required that the binding and catalytic domain were of the same origin. Exchange of lipoyl domains had no effect on the binding properties of the E1p component. These observations confirm previous conclusions, based on site-directed mutagenesis of A. vinelandii E2p [Schulze, E., Westphal, A. H., Boumans, H., and de Kok, A. (1991) Eur. J. Biochem. 202, 841-848], that the binding site for E1p consists of amino acid residues derived from both the binding and the catalytic domain and extend these conclusions to E. coli E2p. Dissociation of the 24 subunit E2p core was only detected when the chimeric E2p proteins contained the catalytic domain from A. vinelandii E2p. Dissociation depends on the binding of peripheral components to the E1p-binding sites, pointing to differences in the inter-trimer contacts between the E2p proteins from both species.(ABSTRACT TRUNCATED AT 400 WORDS)
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1432-1033.1992.tb16943.x | DOI Listing |
Sci Rep
January 2025
Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, Gdansk, 80-308, Poland.
In this study, we evaluated the combined effect between MLE-15, a modular lytic enzyme composed of four building blocks, and reline, a natural deep eutectic solvent. The bioinformatic analysis allowed us to determine the spatial architecture of MLE-15, whose components were bactericidal peptide cecropin A connected via a flexible linker to the cell wall binding domain (CBD) of mesophilic 201ϕ2 - 1 endolysin and catalytic domain (EAD) of highly thermostable Ph2119 endolysin. The modular enzyme showed high thermostability with the melting temperature of 93.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
January 2025
Institute de Quimica Computacional i Catálisi, Universitat de Girona, Girona 17003 Spain.
Creating sustainable and stable semiconductors for energy conversion via catalysis, such as water splitting and carbon dioxide reduction, is a major challenge in modern materials chemistry, propelled by the limited and dwindling reserves of platinum group metals. Two-dimensional hexagonal borocarbonitride (h-BCN) is a metal-free alternative and ternary semiconductor, possessing tunable electronic properties between that of hexagonal boron nitride (h-BN) and graphene, and has attracted significant attention as a nonmetallic catalyst for a host of technologically relevant chemical reactions. Herein, we use density functional theory to investigate the stability and optoelectronic properties of phase-separated monolayer h-BCN structures, varying carbon concentration and domain size.
View Article and Find Full Text PDFVirulence
December 2025
National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
The emergence of antibiotic-resistant bacteria has attracted interest in the field of endolysins. Here, we analyzed the diversity of endolysins and identified a new endolysin, Ply2741, that exhibited broad-spectrum bactericidal activity. Our results demonstrated that Ply2741 could effectively eradicate multidrug-resistant gram-positive pathogens and .
View Article and Find Full Text PDFSci China Life Sci
January 2025
Nanhu Laboratory, National Center of Biomedical Analysis, Beijing, 100850, China.
The infiltration of glioblastoma multiforme (GBM) is predominantly characterized by diffuse spread, contributing significantly to therapy resistance and recurrence of GBM. In this study, we reveal that microtubule deacetylation, mediated through the downregulation of fibronectin type III and SPRY domain-containing 1 (FSD1), plays a pivotal role in promoting GBM diffuse infiltration. FSD1 directly interacts with histone deacetylase 6 (HDAC6) at its second catalytic domain, thereby impeding its deacetylase activity on α-tubulin and preventing microtubule deacetylation and depolymerization.
View Article and Find Full Text PDFSci Rep
January 2025
Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P. O. Box 33, Nizwa, Oman.
Diabetes mellitus, particularly type 2 diabetes, is a growing global health challenge characterized by chronic hyperglycemia due to insulin resistance. One therapeutic approach to managing this condition is the inhibition of α-glucosidase, an enzyme involved in carbohydrate digestion, to reduce postprandial blood glucose levels. In this study, a series of thiosemicarbazide-linked quinoline-piperazine derivatives were synthesized and evaluated for their α-glucosidase inhibitory activity, to identify new agents for type 2 diabetes management.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!