We present results on the growth of damage in 29 fatigue tests of human femoral cortical bone from four individuals, aged 53-79. In these tests we examine the interdependency of stress, cycles to failure, rate of creep strain, and rate of modulus loss. The behavior of creep rates has been reported recently for the same donors as an effect of stress and cycles. In the present paper we first examine how the evolution of damage (drop in modulus per cycle) is associated with the stress level or the "normalized stress" level (stress divided by specimen modulus), and results show the rate of modulus loss fits better as a function of normalized stress. However, we find here that even better correlations can be established between either the cycles to failure or creep rates versus rates of damage than any of these three measures versus normalized stress. The data indicate that damage rates can be excellent predictors of fatigue life and creep strain rates in tensile fatigue of human cortical bone for use in practical problems and computer simulations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1115/1.1865188 | DOI Listing |
Materials (Basel)
December 2024
Department of Civil Engineering, Gyeongsang National University, Jinju 52828, Republic of Korea.
Corrosion in reinforced concrete (RC) structures has led to the increased adoption of non-corrosive materials, such as carbon fiber-reinforced polymers (CFRPs), as replacements for traditional steel rebar. However, ensuring the long-term reliability of CFRP grids under sustained stress is critical for achieving safe and effective designs. This study investigates the long-term tensile creep rupture behavior of CFRP grids to establish a design threshold for their tensile strength under sustained loading conditions in demanding structural applications.
View Article and Find Full Text PDFExcavation of underground engineering structures involving deeply buried water-rich soft rocks is generally carried out using the artificial freezing method. A series of undrained uniaxial and triaxial shear and creep tests were conducted on soft rocks under different confining pressures (0, 0.2, 0.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China. Electronic address:
To elucidate the effect of transglutaminase (TG) on the rheological properties of wheat gluten, this study investigates the underlying mechanisms by analyzing changes in gluten structure. The results demonstrated that the TG-treated gluten samples had higher storage modulus (G') and loss modulus (G″) compared to the control, conversely, creep and recovery strains followed an opposite trend. Notably, the most pronounced effects were observed with adding 2 U/g TG for 20-30 min.
View Article and Find Full Text PDFSci Rep
January 2025
Xincheng Gold Mine of Shandong Gold Mining Co., Ltd., Laizhou, 261400, Shandong, China.
The creep failure of rocks is related to its microstructure, external loading and time. A nonlinear yield model was introduced to describe the variation in the cohesion and friction angle with plastic strain and intergranular stress. The mechanical properties and creep characteristics of deep granite were obtained by indoor tests, and a variable radius particle clump model was constructed based on the particle flow method.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Mechanical Engineering, Brigham Young University, Provo, UT 84602, USA.
Flexible high-deflection strain gauges have been demonstrated to be cost-effective and accessible sensors for capturing human biomechanical deformations. However, the interpretation of these sensors is notably more complex compared to conventional strain gauges, particularly during dynamic motion. In addition to the non-linear viscoelastic behavior of the strain gauge material itself, the dynamic response of the sensors is even more difficult to capture due to spikes in the resistance during strain path changes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!