Industrial biocatalysis is currently attracting much attention to rebuild or substitute traditional producing process of chemicals and drugs. One of key focuses in industrial biocatalysis is biocatalyst, which is usually one kind of microbial enzyme. In the recent, new technologies of bioinformatics have played and will continue to play more and more significant roles in researches of industrial biocatalysis in response to the waves of genomic revolution. One of the key applications of bioinformatics in biocatalysis is the discovery and identification of the new biocatalyst through advanced DNA and protein sequence search, comparison and analyses in Internet database using different algorithm and software. The unknown genes of microbial enzymes can also be simply harvested by primer design on the basis of bioinformatics analyses. The other key applications of bioinformatics in biocatalysis are the modification and improvement of existing industrial biocatalyst. In this aspect, bioinformatics is of great importance in both rational design and directed evolution of microbial enzymes. Based on the successful prediction of tertiary structures of enzymes using the tool of bioinformatics, the undermentioned experiments, i.e. site-directed mutagenesis, fusion protein construction, DNA family shuffling and saturation mutagenesis, etc, are usually of very high efficiency. On all accounts, bioinformatics will be an essential tool for either biologist or biological engineer in the future researches of industrial biocatalysis, due to its significant function in guiding and quickening the step of discovery and/or improvement of novel biocatalysts.
Download full-text PDF |
Source |
---|
Nature
January 2025
Manchester Institute of Biotechnology, The University of Manchester, Manchester, UK.
Nucleophilic aromatic substitutions (SAr) are amongst the most widely used processes in the pharmaceutical and agrochemical industries, allowing convergent assembly of complex molecules through C-C and C-X (X = O, N, S) bond formation. SAr reactions are typically carried out using forcing conditions, involving polar aprotic solvents, stoichiometric bases and elevated temperatures, which do not allow for control over reaction selectivity. Despite the importance of SAr chemistry, there are only a handful of selective catalytic methods reported that rely on small organic hydrogen-bonding or phase-transfer catalysts.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Shanghai Institute of Materia Medica Chinese Academy of Sciences, Chemical Biology Research Center, 201203, Shanghai, CHINA.
Aldolases are powerful C-C bond-forming enzymes for asymmetric organic synthesis because of their supreme stereoselectivity, diverse electrophiles and nucleophiles, and promising scalability. Stereodivergent engineering of aldolases to tune the selectivity for the synthesis of stereoisomers of chiral molecules is highly desirable but has rarely been reported. This study documented the semirational engineering of the decarboxylative aldolase UstD with the focused rational iterative site-specific mutagenesis (FRISM) strategy to perform a C-C bond-forming reaction with dione electrophiles.
View Article and Find Full Text PDFJ Agric Food Chem
January 2025
College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.
In this study, we present an intelligent electromagnetic-actuated microfluidic chip integrated with a G-quadruplex DNAzyme-based biocatalysis platform for rapid and sensitive tetracycline (TC) detection. In this sensing system, TC significantly quenches fluorescent magnetic carbon dots (M-CDs) via the internal filtration effect and dynamic quenching (the excitation and emission wavelength at 350 and 440 nm, respectively). Then, the G-quadruplex on the M-CDs-Aptamer is exposed and bound with hemin to form hemin-G-quadruplex DNAzyme, catalyzing the conversion of 3,3',5,5'-tetramethylbenzidine to produce blue color.
View Article and Find Full Text PDFBioresour Technol
January 2025
Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, China. Electronic address:
Pinene is a plant volatile monoterpenoid which is used in the fragrance, pesticide, and biofuel industries. Although α-pinene has been synthesized in microbial cell factories, the low synthesis efficiency has thus far limited its production. In this study, the cell growth and α-pinene production of the engineered yeast were decoupled by a dynamic regulation strategy, resulting in a 101.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Well-defined single-atom catalysts (SACs) serve as ideal model systems for directly comparing experimental results with theoretical calculations, offering profound insights into heterogeneous catalytic processes. However, precisely designing and controllably synthesizing SACs remain challenging due to the unpredictable structure evolution of active sites and generation of embedded active sites, which may bring about steric hindrance during chemical reactions. Herein, we present the precious nonpyrolysis synthesis of Re SACs with a well-defined phenanthroline coordination supported by NiO (Re-phen/NiO).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!