We report the seventh case of autosomal recessive inherited mitochondrial myopathy, lactic acidosis, and sideroblastic anemia The patient, a product of consanguineous Persian Jews, had the association of mental retardation, dysmorphic features, lactic acidosis, myopathy, and sideroblastic anemia. Muscle biopsy demonstrated low activity of complexes 1 and 4 of the respiratory chain. Electron microscopy revealed paracrystalline inclusions in most mitochondria. Southern blot of the mitochondrial DNA did not show any large-scale rearrangements. The patient was found to be homozygous for the 656C-->T mutation in the pseudouridine synthase 1 gene (PUS1). Mitochondrial myopathy, lactic acidosis, and sideroblastic anemia is an oxidative phosphorylation disorder causing sideroblastic anemia, myopathy, and, in some cases, mental retardation that is due to mutations in the nuclear-encoded PUS1 gene. This finding provides additional evidence that mitochondrial ribonucleic acid modification impacts the phenotypic expression of oxidative phosphorylation disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1177/08830738050200051301DOI Listing

Publication Analysis

Top Keywords

sideroblastic anemia
20
lactic acidosis
16
mitochondrial myopathy
12
myopathy sideroblastic
8
autosomal recessive
8
persian jews
8
pus1 gene
8
myopathy lactic
8
acidosis sideroblastic
8
mental retardation
8

Similar Publications

Many essential proteins require pyridoxal 5'-phosphate, the active form of vitamin B6, as a cofactor for their activity. These include enzymes important for amino acid metabolism, one-carbon metabolism, polyamine synthesis, erythropoiesis, and neurotransmitter metabolism. A third of all mammalian pyridoxal 5'-phosphate-dependent enzymes are localized in the mitochondria; however, the molecular machinery involved in the regulation of mitochondrial pyridoxal 5'-phosphate levels in mammals remains unknown.

View Article and Find Full Text PDF

Mutations in the SLC25A38 gene are responsible for the second most common form of congenital sideroblastic anemia (CSA), a severe condition for which no effective treatment exists. We developed and characterized a K562 erythroleukemia cell line with markedly reduced expression of the SLC25A38 protein (A38-low cells). This model successfully recapitulated the main features of CSA, including reduced heme content and mitochondrial respiration, increase in mitochondrial iron, ROS levels and sensitivity to oxidative stress.

View Article and Find Full Text PDF

X-linked sideroblastic anemia (XLSA) is a congenital anemia caused by mutations in ALAS2, a gene responsible for heme synthesis. Treatments are limited to pyridoxine supplements and blood transfusions, offering no definitive cure except for allogeneic hematopoietic stem cell transplantation, only accessible to a subset of patients. The absence of a suitable animal model has hindered the development of gene therapy research for this disease.

View Article and Find Full Text PDF

Besides transfusion therapy, ineffective erythropoiesis contributes to systemic iron overload in myelodysplastic syndromes with ring sideroblasts (MDS-RS) via erythroferrone-induced suppression of hepcidin synthesis in the liver, leading to increased intestinal iron absorption. The underlying pathophysiology of MDS-RS, characterized by disturbed heme synthesis and mitochondrial iron accumulation, is less well understood. Several lines of evidence indicate that the mitochondrial transporter ABCB7 is critically involved.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!