4,2',4',6'-Tetrahydroxychalcone (chalcone) and 4,2',4'-trihydroxychalcone (deoxychalcone) serve as precursors of ecologically important flavonoids and isoflavonoids. Deoxychalcone formation depends on chalcone synthase and chalcone reductase; however, the identity of the chalcone reductase substrate out of the possible substrates formed during the multistep reaction catalyzed by chalcone synthase remains experimentally elusive. We report here the three-dimensional structure of alfalfa chalcone reductase bound to the NADP+ cofactor and propose the identity and binding mode of its substrate, namely the non-aromatized coumaryl-trione intermediate of the chalcone synthase-catalyzed cyclization of the fully extended coumaryl-tetraketide thioester intermediate. In the absence of a ternary complex, the quality of the refined NADP+-bound chalcone reductase structure serves as a template for computer-assisted docking to evaluate the likelihood of possible substrates. Interestingly, chalcone reductase adopts the three-dimensional structure of the aldo/keto reductase superfamily. The aldo/keto reductase fold is structurally distinct from all known ketoreductases of fatty acid biosynthesis, which instead belong to the short-chain dehydrogenase/reductase superfamily. The results presented here provide structural support for convergent functional evolution of these two ketoreductases that share similar roles in the biosynthesis of fatty acids/polyketides. In addition, the chalcone reductase structure represents the first protein structure of a member of the aldo/ketoreductase 4 family. Therefore, the chalcone reductase structure serves as a template for the homology modeling of other aldo/keto-reductase 4 family members, including the reductase involved in morphine biosynthesis, namely codeinone reductase.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2860619 | PMC |
http://dx.doi.org/10.1074/jbc.M502239200 | DOI Listing |
bioRxiv
October 2024
Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA.
Transient plant enzyme complexes formed via protein-protein interactions (PPIs) play crucial regulatory roles in secondary metabolism. Complexes assembled on cytochrome P450s (CYPs) are challenging to characterize metabolically due to difficulties in decoupling the PPIs' metabolic impacts from the CYPs' catalytic activities. Here, we developed a yeast-based synthetic biology approach to elucidate the metabolic roles of PPIs between a soybean-derived CYP, isoflavone synthase (GmIFS2), and other enzymes in isoflavonoid metabolism.
View Article and Find Full Text PDFNew Phytol
December 2024
Root Biology Center, State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
Phosphate (Pi) availability is well known to regulate plant root growth. However, it remains largely unknown how flavonoid synthesis participates in affecting plant root growth in response to Pi starvation. In the study, the crystal structure of a plant protein phosphatase, GmHAD1-2, was dissected using X-ray crystallography for the first time.
View Article and Find Full Text PDFPlant Physiol
December 2024
The New Zealand Institute for Plant and Food Research Limited (Plant and Food Research), Auckland 1142, New Zealand.
Dihydrochalcones (DHCs) are flavonoids produced as a side branch of the phenylpropanoid pathway. DHCs are found at high concentrations in apples (Malus spp.) but not in pears (Pyrus spp.
View Article and Find Full Text PDFTransgenic Res
October 2024
Plant Biotechnology Section, Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India.
A promoter is a crucial component in driving the expression of a transgene of interest for biotechnological applications in crop improvement and thus characterization of varied regulatory regions is essential. Here, we identified the promoter of COR2-like (codeinone reductase-like) from banana and characterized its tissue specific and stress inducible nature. MusaCOR2-like of banana is closely related to COR2 and CHR (chalcone reductase) sequences from different plant species and contains signature sequences including a catalytic tetrad typical of proteins with aldo-keto reductase activity.
View Article and Find Full Text PDFIsoliquiritigenin formation is a key reaction during deoxyflavonoid biosynthesis, which is catalyzed by two enzymes, chalcone synthase (CHS) and reductase (CHR). The substrates for CHS are established. However, the substrate for CHR is unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!