Investigation on solvent-induced polymorphism in X-ray structures of 2-hydroxy-1,4-naphthoquinone (Lawsone) 1, is carried out. In protic methanol, 1 crystallizes in monoclinic space group P2(1)/c (1a) comprising of 2D hydrogen bonded network via cyclic dimers. In aprotic solvent such as acetone on the other hand, 1 exhibits orthorhombic space group Pna 2(1) (1b) and emerges with 1D catemeric chain. Solvent-induced topological isomerism of cyclic dimers and helical catemeric chains arising from (i) bifurcated intra- and inter molecular hydrogen bondings viz. O-H...O=C interactions between C(2) hydroxyl and C(1), C(4) carbonyls, (ii) C-H...O interactions viz. C(3)-H...O(1)C(1) have been discussed. A signal for radical in 1 at g = 2.0058 is signatured by EPR spectrum and it's oxime derivative viz. 2-hydroxy-4-naphthoquinone-1-oxime 2, in solid state shows biradical and monoradical formation with aggregation of dimer and monomer due to non-covalent hydrogen bonds. Zero field split parameters for 2 are estimated to be D = 215 G, Ex = 13 G, Ey = 47 G at 298 K. A half field signal at 77 K indicates triplet ground state. Frozen glass EPR of 2 resolves as regioregular dimeric-monomeric species showing hyperfine interactions with 1-oximino nitrogen in dimer A (14N) = 15.5 G].

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2005.04.054DOI Listing

Publication Analysis

Top Keywords

x-ray structures
8
space group
8
cyclic dimers
8
som assembly
4
assembly hydroxynaphthoquinone
4
hydroxynaphthoquinone oxime
4
oxime polymorphic
4
polymorphic x-ray
4
structures epr
4
epr studies
4

Similar Publications

Background: Temporal lobe epilepsy (TLE) can lead to structural brain abnormalities, with thalamus atrophy being the most common extratemporal alteration. This study used probabilistic tractography to investigate the structural connectivity between individual thalamic nuclei and the hippocampus in TLE.

Methods: Thirty-six TLE patients who underwent pre-surgical 3 Tesla magnetic resonance imaging (MRI) and 18 healthy controls were enrolled in this study.

View Article and Find Full Text PDF

The rising demand for efficient energy storage in flexible electronics is driving the search for materials that are well-suited for the fabrication of these devices. Layered Double Hydroxides (LDHs) stand out as a remarkable material with a layered structure that embodies exceptional electrochemical properties. In this study, both double-shelled and single-shelled NiFe-Layered Double Hydroxide (LDH) particles are prepared using spindle-shaped MIL-101(Fe) as the template.

View Article and Find Full Text PDF

Severe mitral regurgitation (MR) following surgical repair of the mitral valve poses a significant clinical challenge. Patients who have undergone surgery are typically at high risk for a second operation. This report details the case of a 54-year-old male who underwent aortic valve replacement and mitral valve repair using a 34-ring, 14 years prior.

View Article and Find Full Text PDF

AIE-Active Antibacterial Photosensitizer Disrupting Bacterial Structure: Multicenter Validation against Drug-Resistant Pathogens.

Small Methods

January 2025

Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Precision Medical Diagnostics, Guangdong Engineering and Technology Research Center for Rapid Diagnostic Biosensors, Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, P. R. China.

Antimicrobial resistance (AMR) has emerged as a global challenge in treating bacterial infections, creating an urgent need for broad-spectrum antimicrobial agents that can effectively combat multidrug-resistant (MDR) bacteria. Despite advancements in novel antimicrobial agents, many fail to comprehensively cover common resistant bacterial strains or undergo rigorous multi-center validation. Herein, a cationic AIE-active photosensitizers are developed, ITPM, derived from a triphenylamine-pyridine backbone to address the MDR challenge.

View Article and Find Full Text PDF

Binuclear ruthenium complexes have been investigated for potential DNA-targeted therapeutic and diagnostic applications. Studies of DNA threading intercalation, in which DNA base pairs must be broken for intercalation, have revealed means of optimizing a model binuclear ruthenium complex to obtain reversible DNA-ligand assemblies with the desired properties of high affinity and slow kinetics. Here, we used single-molecule force spectroscopy to study a binuclear ruthenium complex with a longer semi-rigid linker relative to the model complex.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!