Background And Methods: Endotoxin shock is mediated by various cytokines, including tumor necrosis factor. Treatment of patients with i.v. immunoglobulin has been shown to reduce the concentration of circulating cytokines. The purpose of this study was to determine the protective effects of immunoglobulin for i.v. use on meningococcal endotoxin-induced shock in a rabbit model. Experimental animals were challenged with i.v. meningococcal endotoxin (lipo-oligosaccharide) 10 micrograms/kg, and treated with either a 2-hr i.v. immunoglobulin infusion (400 mg/kg) or a similar saline infusion that was initiated 30 mins before endotoxin challenge. Control animals were challenged with saline alone.
Results: Compared with untreated control animals, pulse rate increased (p less than .007) and mean arterial pressure and serum bicarbonate concentrations decreased (p less than .02) in both experimental groups, but did not differ between immunoglobulin-treated and saline-treated animals (p greater than .05) at any time after the endotoxin challenge. Geometric mean serum endotoxin concentrations were significantly (p less than .03) lower in the immunoglobulin-treated animals at 60, 120, 180, 240, 300, and 360 mins after the endotoxin challenge. The geometric mean serum tumor necrosis factor level at 1 hr after the endotoxin challenge in the immunoglobulin-treated experimental animals was lower than in saline-treated animals (5.53 vs. 8.47 tumor necrosis factor enzyme-linked immunosorbent assay U/mL), but not significantly so (p greater than .05). Mortality rate was similar in both experimental groups; eight (67%) of 12 saline-treated experimental rabbits and seven (70%) of ten immunoglobulin-treated rabbits died. All untreated control animals survived 24 hrs.
Conclusions: In this model of circulatory shock in rabbits, i.v. immunoglobulin: a) does not significantly alter the physiologic responses to endotoxin challenge; b) significantly reduces endotoxin concentrations; c) reduces tumor necrosis factor concentrations, but not significantly; and d) does not improve survival rate.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/00003246-199206000-00020 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Institute of Translational Medicine, Shanghai University, 200444 Shanghai, China.
Background: Dexamethasone has proven life-saving in severe acute respiratory syndrome (SARS) and COVID-19 cases. However, its systemic administration is accompanied by serious side effects. Inhalation delivery of dexamethasone (Dex) faces challenges such as low lung deposition, brief residence in the respiratory tract, and the pulmonary mucus barrier, limiting its clinical use.
View Article and Find Full Text PDFExp Lung Res
January 2025
Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
Acute lung injury (ALI) is a severe respiratory disease with high mortality, mainly due to overactivated oxidative stress and subsequent pyroptosis. Mesencephalic astrocyte-derived neurotrophic factor (MANF), an inducible secretory endoplasmic reticulum (ER) stress protein, inhibits lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the exact molecular mechanism remains unclear.
View Article and Find Full Text PDFMolecules
January 2025
Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
Dual inhibition of cyclooxygenase-2 (COX-2) and lipoxygenase (LOX) is a recognized strategy for enhanced anti-inflammatory effects in small molecules, offering potential therapeutic benefits for individuals at risk of dementia, particularly those with neurodegenerative diseases, common cancers, and diabetes type. Alzheimer's disease (AD) is the most common cause of dementia, and the inhibition of acetylcholinesterase (AChE) is a key approach in treating AD. Meanwhile, Caspase-3 catalyzes early events in apoptosis, contributing to neurodegeneration and subsequently AD.
View Article and Find Full Text PDFImmunohorizons
January 2025
Vaccine Research & Development Center, Department of Physiology & Biophysics, University of California Irvine, Irvine, CA 92697, United States.
Adjuvants play a central role in enhancing the immunogenicity of otherwise poorly immunogenic vaccine antigens. Combining adjuvants has the potential to enhance vaccine immunogenicity compared with single adjuvants, although the cellular and molecular mechanisms of combination adjuvants are not well understood. Using the influenza virus hemagglutinin H5 antigen, we define the immunological landscape of combining CpG and MPLA (TLR-9 and TLR-4 agonists, respectively) with a squalene nanoemulsion (AddaVax) using immunologic and transcriptomic profiling.
View Article and Find Full Text PDFAfr J Prim Health Care Fam Med
December 2024
Department of Internal Medicine, Prince Mshiyeni Memorial Hospital, Durban.
Background: Tuberculosis (TB) remains a leading cause of mortality in low-resource settings and poses a diagnostic challenge in human immunodeficiency virus (HIV)-negative populations because of limitations in traditional diagnostic methods such as sputum smear microscopy (SSM) and sputum Xpert Ultra. There is a lack of effective, non-invasive diagnostic options for TB diagnosis in HIV-negative populations. This scoping review explores the potential of urinary lipoarabinomannan (ULAM) as a point-of-care diagnostic tool for Mycobacterium tuberculosis (MTB) in HIV-negative individuals.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!