The cis- and trans-isomers of enalapril and enalaprilat can be resolved by HPLC and by capillary electrophoresis. The isomeric content of enalapril is perturbed by the ionization of both its carboxyl and amine groups, while the isomeric content of enalaprilat is only perturbed by the ionization of its amine group. Increasing the hydrophobicity of the analyte solvent, as reflected in its molar polarization, increases the Z (cis) content of enalapril and markedly decreases the kinetics for isomerization. Far UV circular dichroic measurements suggest that the increase in Z (cis) content of enalapril is due to protonation of its carboxylate group. Taken together, the in-vitro properties of enalapril and enalaprilat suggest that the in-vivo transformation of the prodrug enalapril to the inhibitor enalaprilat and its delivery to angiotensin-converting enzyme should not be significantly limited by cis/trans-isomerization.

Download full-text PDF

Source
http://dx.doi.org/10.1211/0022357056433DOI Listing

Publication Analysis

Top Keywords

enalapril enalaprilat
12
content enalapril
12
isomeric content
8
perturbed ionization
8
cis content
8
enalapril
7
enalaprilat
5
sensitivity cis/trans-isomerization
4
cis/trans-isomerization enalapril
4
enalaprilat solvent
4

Similar Publications

Toxicological and environmental risks of enalapril and their possible transformation products generated under phototransformation reactions.

Toxicol Rep

December 2024

Universidad Autónoma de Nuevo Léon, UANL, Facultad de Ciencias Químicas,  Cd. Universitaria, Av. Universidad s/n, San Nicolas de los Garza, Nuevo Léon 66455, México.

Pharmaceutical active compounds (PACs) in the concentration range of hundreds of ng/L to μg/L have been identified in urban surface water, groundwater, and agricultural land where they cause various health risks. These pollutants are classified as emerging and cannot be efficiently removed by conventional wastewater treatment processes. The use of nano-enabled photocatalysts in the removal of pharmaceuticals in aquatic systems has recently received research attention owing to their enhanced properties and effectiveness.

View Article and Find Full Text PDF

Human enteroid monolayers as a potential alternative for Ussing chamber and Caco-2 monolayers to study passive permeability and drug efflux.

Eur J Pharm Sci

October 2024

Division of Pharmacology and Toxicology, Department of Pharmacy, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen (Route 137), Nijmegen, the Netherlands; Department of Intensive Care, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Neonatal and Pediatric Intensive Care, Erasmus MC Sophia Children's Hospital, Rotterdam, the Netherlands. Electronic address:

After oral administration, the intestine is the first site of drug absorption, making it a key determinant of the bioavailability of a drug, and hence drug efficacy and safety. Existing non-clinical models of the intestinal barrier in vitro often fail to mimic the barrier and absorption of the human intestine. We explore if human enteroid monolayers are a suitable tool for intestinal absorption studies compared to primary tissue (Ussing chamber) and Caco-2 cells.

View Article and Find Full Text PDF

Enalapril is an orally administered angiotensin-converting enzyme inhibitor which is widely prescribed to treat hypertension, chronic kidney disease, and heart failure. It is an ester prodrug that needs to be activated by carboxylesterase 1 (CES1). CES1 is a hepatic hydrolase that in vivo biotransforms enalapril to its active form enalaprilat in order to produce its desired pharmacological impact.

View Article and Find Full Text PDF

Chikungunya virus (CHIKV) infection causes chikungunya, a viral disease that currently has no specific antiviral treatment. Several repurposed drug candidates have been investigated for the treatment of the disease. In order to improve the efficacy of the known drugs, combining drugs for treatment is a promising approach.

View Article and Find Full Text PDF

Nanocarriers provide a number of undeniable advantages that could improve the bioavailability of active agents for human, animal, and plant cells. In this study, we compared hybrid nanoparticles (HNPs) consisting of a calcium phosphate core coated with chitosan with unmixed calcium phosphate (CaP) and chitosan nanoparticles (CSNPs) as carriers of a model substrate, enalaprilat. This tripeptide analog is an inhibitor of angiotensin-converting enzyme and was chosen by its ability to lower intraocular pressure (IOP).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!