Isothermal titration calorimetry (ITC), surface tensiometry, and ultrasonic velocimetry were used to characterize surfactant-maltodextrin interactions in buffer solutions (pH 7.0, 10 mM NaCl, 20 mM Trizma base, 30.0 degrees C). Experiments were carried out using three surfactants with similar nonpolar tail groups (C12) but different charged headgroups: anionic (sodium dodecyl sulfate, SDS), cationic (dodecyl trimethylammonium bromide, DTAB), and nonionic (polyoxyethylene 23 lauryl ether, Brij35). All three surfactants bound to maltodextrin, with the binding characteristics depending on whether the surfactant headgroup was ionic or nonionic. The amounts of surfactant bound to 0.5% w/v maltodextrin (DE 5) at saturation were < 0.3 mM Brij35, approximately 1-1.6 mM SDS, and approximately 1.5 mM DTAB. ITC measurements indicated that surfactant binding to maltodextrin was exothermic. Surface tension measurements indicated that the DTAB-maltodextrin complex was more surface active than DTAB alone but that SDS- and Brij35- maltodextrin complexes were less surface active than the surfactants alone.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la0361619DOI Listing

Publication Analysis

Top Keywords

surfactant-maltodextrin interactions
8
isothermal titration
8
titration calorimetry
8
surface tensiometry
8
tensiometry ultrasonic
8
ultrasonic velocimetry
8
three surfactants
8
measurements indicated
8
surface active
8
surface
5

Similar Publications

Isothermal titration calorimetry (ITC), surface tensiometry, and ultrasonic velocimetry were used to characterize surfactant-maltodextrin interactions in buffer solutions (pH 7.0, 10 mM NaCl, 20 mM Trizma base, 30.0 degrees C).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!