Effect of dynamic surfactant adsorption on emulsion stability.

Langmuir

Centro de Física, Laboratorio de Fisicoquímica de Coloides, Instituto Venezolano de Investigaciones Científicas (IVIC), Aptdo. 21827, Caracas, Venezuela.

Published: May 2004

The effect of dynamic surfactant adsorption on the stability of concentrated oil in water emulsions is studied. For this purpose, a modification of the standard Brownian dynamics algorithm (Ermak, D.; McCammon, J. A. J. Chem. Phys. 1978, 69, 1352) previously used to study the behavior of bitumen emulsions assuming instantaneous adsorption (Urbina-Villalba, G.; García-Sucre, M. Langmuir 2000, 16, 7975) was employed. In the present case, dynamic adsorption (DA) was accounted for through a time-dependent electrostatic repulsion between the drops, a function of the surfactant surface excess. The surface excess was allowed to evolve with time according to well-established analytical expressions which depend parametrically on the surfactant diffusion constant (Ds) and the total surfactant concentration (C). The investigation required appropriate incorporation of hydrodynamic interactions in concentrated systems. This was achieved through a novel methodology, which expresses the diffusion constant of each particle as a function of its local concentration and the shortest distance of separation between nearest neighbors. In model systems, the variation of the number of drops as a function of time was followed for different magnitudes of the apparent diffusion constant D(app) of the surfactant. For each of these values, the effect of C and the volume fraction of internal phase (phi) was considered. DA was found to influence emulsion stability appreciably at moderately high phi. In this case, the average collision time between drops is comparable to the time required for the occurrence of a substantial surfactant adsorption, but the interdrop separation is sufficiently large to prevent a considerable slowdown of particle movement due to hydrodynamic interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la030327oDOI Listing

Publication Analysis

Top Keywords

surfactant adsorption
12
diffusion constant
12
dynamic surfactant
8
emulsion stability
8
drops function
8
surface excess
8
hydrodynamic interactions
8
surfactant
6
adsorption
5
adsorption emulsion
4

Similar Publications

Photocatalytic reduction of nitrate to N holds great significance for environmental governance. However, the selectivity of nitrate reduction to N is influenced by sacrificial agents and the kinds of cocatalysts (such as Pt and Ag). The presence of unconsumed sacrificial agents can aggravate environmental pollution, while noble metal-based cocatalysts increase application costs.

View Article and Find Full Text PDF

A novel synthesis of a nanometric MCM-41 from biogenic silica obtained from rice husk is here presented. CTABr and Pluronic F127 surfactants were employed as templating agents to promote the formation of a long-range ordered 2D-hexagonal structure with cylindrical pores and to limit the particle growth at the nanoscale level thus resulting in a material with uniform particle size of 20-30 nm. The physico-chemical properties of this sample (RH-nanoMCM) were investigated through a multi-technique approach, including PXRD, Si MAS NMR, TEM, -potential and N physisorption analysis at 77 K.

View Article and Find Full Text PDF

The oil film formed by the adhesion of crude oil to the resin-asphalt adsorption layer is difficult to peel off due to the strong oil-solid interaction, which severely limits further improvements in oil recovery. Although conventional compound oil displacement systems can effectively reduce oil-water interfacial tension, facilitate oil droplet deformation, and alleviate the Jamin effect, they are insufficient in controlling the wettability of oleophilic rock surfaces. In this paper, sodium nonylphenol polyoxyethylene ether sulfate (NPES) and sodium lauric acid ethanolamine sulfonate (HLDEA) were compounded to construct an efficient oil displacement system that simultaneously achieves wettability control of lipophilic surfaces and ultralow oil-water interfacial tension.

View Article and Find Full Text PDF

Rational regulation of interface structure in photocatalysts is a promising strategy to improve the photocatalytic performance of carbon dioxide (CO) reduction. However, it remains a challenge to modulate the interface structure of multi-component heterojunctions. Herein, a strategy integrating heterojunction with facet engineering is developed to modulate the interface structure of metal-organic frameworks (MOF)-based heterojunctions.

View Article and Find Full Text PDF

Adsorption and Bulk Assembly of Quaternized Hydroxyethylcellulose-Anionic Surfactant Complexes on Negatively Charged Substrates.

Polymers (Basel)

January 2025

Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, Plaza de la Ciencias s/n, 28040 Madrid, Spain.

This study examines the adsorption and bulk assembly behaviour of quaternized hydroxyethylcellulose ethoxylate (QHECE)-sodium dodecyl sulphate (SDS) complexes on negatively charged substrates. Due to its quaternized structure, QHECE, which is used in several industries, including cosmetics, exhibits enhanced electrostatic interactions. The phase behaviour and adsorption mechanisms of QHECE-SDS complexes are investigated using model substrates that mimic the wettability and surface charge of damaged hair fibres.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!