Lactose: the milk sugar from a biotechnological perspective.

Crit Rev Food Sci Nutr

Instituto de Agroquímica y Tecnología de Alimentos, Valencia, Spain.

Published: September 2005

Lactose is a very important sugar because of its abundance in the milk of humans and domestic animals. Lactose is a valuable asset as a basic nutrient and the main substrate in fermentative processes that led to the production of fermented milk products, such as yogurt and kefir. In some instances, lactose also can be a problem as the causative agent of some diseases, such as lactose intolerance and galactosemia, or for being a by-product generated in huge amounts by the cheese industry. The study of the biochemical reactions leading to the synthesis and assimilation of lactose has provided valuable models for the understanding of biosynthetic and catabolic processes. Lactose-hydrolyzing enzymes are structurally and phylogenetically related to different types of beta-galactosidases and bacterial cellobiases involved in the enzymatic degradation of cellulose. Biotransformation of lactose, by either enzymatic or fermentative procedures, is important for different types of industrial applications in dairy and pharmaceutical industries.

Download full-text PDF

Source
http://dx.doi.org/10.1080/10408690490931411DOI Listing

Publication Analysis

Top Keywords

lactose
7
lactose milk
4
milk sugar
4
sugar biotechnological
4
biotechnological perspective
4
perspective lactose
4
lactose sugar
4
sugar abundance
4
abundance milk
4
milk humans
4

Similar Publications

Modern-day consumers are interested in highly nutritious and safe foods with corresponding organoleptic qualities. Such foods are increasingly subjected to various processing techniques which include the use of enzymes. These enzymes like amylases, lipases, proteases, xylanases, laccases, pullulanase, chitinases, pectinases, esterases, isomerases, and dehydrogenases could be derived from extremophilic organisms such as thermophiles, psychrophiles, acidophiles, alkaliphiles, and halophiles.

View Article and Find Full Text PDF

Objective: To describe demographics, causative pathogens, hospitalization, mortality, and antimicrobial resistance of bacterial bloodstream infections (BSIs) among beneficiaries in the global U.S. Military Health System (MHS), a single-provider healthcare system with 10-year longitudinal follow-up.

View Article and Find Full Text PDF

Probing ligand-induced conformational changes in an MFS transporter in vivo using site-directed PEGylation.

J Mol Biol

January 2025

Department of Chemistry and Biochemistry, California State University, San Bernardino, 5500 University Pkwy, San Bernardino, CA 92407, USA. Electronic address:

So far, site-directed alkylation (SDA) studies on transporters in the Major Facilitator Superfamily (MFS) are mostly performed at conditions different from the native cellular environment. In this study, using GFP-based site-directed PEGylation, ligand-induced conformational changes in the lactose permease of Escherichia coli (LacY), were examined in vivo for the first time. Accessibility/reactivity of single-Cys replacements in a Cys-less LacY-eGFP fusion background was tested using methoxy polyethylene glycol-maleimide-5K (mPEG-Mal-5K) in the absence or presence of a ligand, and the band-shift of the fusion upon PEGylation was detected by in-gel fluorescence.

View Article and Find Full Text PDF

Nanocarrier-based dry powders for lung disease treatment are crucial, with in vitro and in silico research being pivotal to their success. This study introduces a method for creating Tiotropium-bromide liposomal inhalation dry powder, termed "Trojan-particles," utilizing thin-film hydration and spray-drying with lactose-arginine carriers. Encapsulating tiotropium-bromide in nanoliposomes enhances lung treatment via liposomes' unique features.

View Article and Find Full Text PDF
Article Synopsis
  • Human milk (HBM) and bovine milk (PBM) are both sources of nutrition that involve lactose, which can be fermented by the bacteria Streptococcus mutans, potentially affecting dental health.
  • This study compares how S. mutans forms biofilms, produces acid, and buffers in HBM, plain and sweetened PBM, and infant formula (IF) through various microbiological assays.
  • Results indicated that sweetened bovine milk had the highest biofilm formation and lowest pH, while both HBM and PBM showed low cariogenicity, differing from the effects of sucrose.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!