Ten years after the introduction of the first drug for the treatment of Alzheimer's disease, tacrine, it seems appropriate to reappraise the pharmacological processes of innovation in the field of research in dementia. The aim of this review is to pinpoint concrete improvements achieved in this field, in terms of experimental methods and clinical evaluation of the compounds, as well as the neurochemistry of the disease and cellular targets deserving of initial consideration. * The article first considers the use of animal models of Alzheimer's disease, which are classified according to two categories: animals with lesions of some neuronal pathways specifically implicated in clinical symptoms (i.e. lesions of the nucleus basalis of Meynert, the origin of cholinergic projections to the cortex underlying memory processes); and transgenic models, which are intended to reproduce some of the neuropathological hallmarks of Alzheimer's disease. Drugs can be tested in animals with such alterations for their effect on neuropathology, neurochemistry and behavioural disturbances. More recently, in silico models have been developed, which offer the possibility of simulating the pharmacodynamic effects of drugs in specific areas of the brain. These experiments are helpful in distinguishing purely symptomatic effects from disease-modifying effects, the latter being the ultimate goal of the modern pharmacology of dementia. * The second breakthrough considered in this article is the codification and standardisation of clinical methods for obtaining a more accurate and earlier diagnosis (the recent introduction of the concept of "Mild Cognitive Impairment", which includes patients who will later develop a true clinical dementia syndrome). In that respect, the determination of the biological markers of Alzheimer's disease (apolipoprotein E, amyloid substance, protein-tau, isoprostane) as well as progress in neuroimaging (functional positron emission tomography [fPET]-scan, single photon emission-computed tomography [SPECT], functional nuclear magnetic resonance [fNMR]) are discussed in terms of their potential as new tools in the early stages of drug development (surrogate markers). The methods used during the comparative clinical trials (phase III) have been elaborated and internationally standardised during the assessment of the different acetylcholinesterase inhibitors (AChE-I), with the knowledge that, since 1994, four of these have been officially approved: tacrine, donepezil, rivastigmine and galantamine; the same methods have been used for developing memantine, a recently-launched modulator of glutamatergic neurotransmission. The validated scales now take into consideration not only the cognitive dimensions of Alzheimer's disease but also the behavioural symptoms, with the introduction of the concept of BPSD (behavioural psychological symptoms of dementia). Some proposals to improve this clinical assessment of anti-dementia drugs are presented here. * The section of this article dealing with prospective issues considers the main pathways of interest in drug innovation and the elucidation of new targets for the future compounds. As well as their symptomatic effects on the different components of cognition, drugs should be neuroprotective and limit the lesions documented in Alzheimer's disease, with the aim of progressing far beyond the amyloid hypothesis (immunisation, beta-sheet breakers, secretase inhibitors). The field of excitotoxicity (which is mainly glutamate dependent) appears fruitful, because of the possibility of pharmacological intervention at the different steps in the excitotoxic process. All the new directions presented in this article support the concept of true disease-modifying agents. In conclusion, this prospective review should be considered as a guide in fostering drug innovation in Alzheimer's disease and related disorders and should help to decrease the gap existing between neuroscience and therapeutics.

Download full-text PDF

Source
http://dx.doi.org/10.2515/therapie:2005013DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
32
disease
9
compounds well
8
symptomatic effects
8
introduction concept
8
presented article
8
drug innovation
8
alzheimer's
7
clinical
6
[pharmacology alzheimer's
4

Similar Publications

Introduction: Identifying early risks of developing Alzheimer's disease (AD) is a major challenge as the number of patients with AD steadily increases and requires innovative solutions. Current molecular diagnostic modalities, such as cerebrospinal fluid (CSF) testing and positron emission tomography (PET) imaging, exhibit limitations in their applicability for large-scale screening. In recent years, there has been a marked shift toward the development of blood plasma-based diagnostic tests, which offer a more accessible and clinically viable alternative for widespread use.

View Article and Find Full Text PDF

Searching for new drugs to treat Alzheimer's disease dementia through multiple pathways.

World J Clin Cases

January 2025

Department of Neurology, Guizhou Medical University, Guiyang 550004, Guizhou Province, China.

Dementia is a group of diseases, including Alzheimer's disease (AD), vascular dementia, Lewy body dementia, frontotemporal dementia, Parkinson's disease dementia, metabolic dementia and toxic dementia. The treatment of dementia mainly includes symptomatic treatment by controlling the primary disease and accompanying symptoms, nutritional support therapy for repairing nerve cells, psychological auxiliary treatment, and treatment that improves cognitive function through drugs. Among them, drug therapy to improve cognitive function is important.

View Article and Find Full Text PDF

Comprehensive review on neprilysin (NEP) inhibitors: design, structure-activity relationships, and clinical applications.

Front Pharmacol

December 2024

Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.

Neprilysin (NEP), a zinc-dependent membrane-bound metallopeptidase, regulates various bioactive peptides, particularly in kidneys, vascular endothelium, and the central nervous system. NEP's involvement in metabolizing natriuretic peptides, insulin, and enkephalins makes it a promising target for treating cardiovascular and Alzheimer's diseases. Several NEP inhibitors, such as sacubitril and omapatrilat, have been approved for clinical use, which inhibit NEP activity to prolong the bioactivity of beneficial peptides, thereby exerting therapeutic effects.

View Article and Find Full Text PDF

Neuroprotective role of sialic-acid-binding immunoglobulin-like lectin-11 in humanized transgenic mice.

Front Neurosci

December 2024

Institute of Reconstructive Neurobiology, Medical Faculty and University Hospital of Bonn, University of Bonn, Bonn, Germany.

Brain aging is a chronic process linked to inflammation, microglial activation, and oxidative damage, which can ultimately lead to neuronal loss. Sialic acid-binding immunoglobulin-like lectin-11 (SIGLEC-11) is a human lineage-specific microglial cell surface receptor that recognizes -2-8-linked oligo-/polysialylated glycomolecules with inhibitory effects on the microglial inflammatory pathways. Recently, the gene locus was prioritized as a top tier microglial gene with potential causality to Alzheimer's disease, although its role in inflammation and neurodegeneration remains poorly understood.

View Article and Find Full Text PDF

Background: Predicting dementia early has major implications for clinical management and patient outcomes. Yet, we still lack sensitive tools for stratifying patients early, resulting in patients being undiagnosed or wrongly diagnosed. Despite rapid expansion in machine learning models for dementia prediction, limited model interpretability and generalizability impede translation to the clinic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!