[On-line monitoring of oxygen uptake rate and its application in hybridoma culture].

Sheng Wu Gong Cheng Xue Bao

Cell Engineering Research Centre, Fourth Military Medical University, Xi'an 710033, China.

Published: September 2003

On-line analysis and control are critical for the optimization of product yields in animal cell culture. The close monitor of viable cell number helps to gain a better insight into the metabolism and to refine culture strategy. In this study, we use the oxygen uptake rate (OUR) to estimate the number of viable cell and the OUR-based feed-back control strategy for nutrients feeding to improve the efficiency of cell culture. A hybridoma cell line (HAb18) was cultured in fed-batch and perfusion model using serum free medium in 5L CelliGen Plus bioreactor (NBS Co., American) and 5L Biostat B bioreactor (Braun Co., Germany). The system and the method for online monitoring OUR in bioreactors, based on the dynamic measurement of dissolved oxygen (DO), were developed. The method of on-line cell concentration estimation was established based on the relationship between the growth of the hybridoma and the uptake rate of oxygen. This method was then used to determine OUR and the concentrations of cell, antibody, glucose, lactate, glutamine and ammonia in the bioreactors at given times. The relationship between OUR and nutrients metabolism was studied and OUR-based feed-back control strategy, which used the state deltaOUR = 0 as the regulation point, was established and used to control the rates of nutrients or medium feeding rate in the perfusion culture. The results showed that there was close relationship between OUR, concentration of live cells, productivity of antibody and consumption of glutamine. The sudden decrease in OUR may be caused by glutamine depletion, and with different delay times, the viable cell concentration and antibody productivity also decreased. The further analysis revealed the linear relationship between OUR and the density of live cells in the exponential growth phase as qOUR = (0.103 +/- 0.028) x 10(-12) mol/cell/h. These findings can be applied to the on-line detection of live cell density. Our study also indicated that by adjusting the perfusion rate with OUR-based feed-back control strategy, it is feasible to continuously increase in viable cell density and antibody concentration in the perfusion culture.

Download full-text PDF

Source

Publication Analysis

Top Keywords

viable cell
16
uptake rate
12
our-based feed-back
12
feed-back control
12
control strategy
12
cell
10
oxygen uptake
8
cell culture
8
culture close
8
cell concentration
8

Similar Publications

Isolation and characterization of haploid heterothallic beer yeasts.

Appl Microbiol Biotechnol

January 2025

Department of Microbiology and Biochemistry, Hochschule Geisenheim University, Von-Lade-Straße 1, 65366, Geisenheim, Germany.

Improving ale or lager yeasts by conventional breeding is a non-trivial task. Domestication of lager yeasts, which are hybrids between Saccharomyces cerevisiae and Saccharomyces eubayanus, has led to evolved strains with severely reduced or abolished sexual reproduction capabilities, due to, e.g.

View Article and Find Full Text PDF

BRAF mutations drive initiation and progression of various tumors. While BRAF inhibitors are effective in BRAF-mutant melanoma patients, intrinsic or acquired resistance to these therapies is common. Here, we identify non-receptor-type protein tyrosine phosphatase 23 (PTPN23) as an alternative effective target in BRAF-mutant cancer cells.

View Article and Find Full Text PDF

Objectives: Unlike other diseases, cancer is not just a genome disease but should broadly be viewed as a disease of the cellular machinery. Therefore, integrative multifaceted approaches are crucial to understanding the complex nature of cancer biology. Bcl-2 (B-cell lymphoma 2), encoded by the human BCL-2 gene, is an anti-apoptotic molecule that plays a key role in apoptosis and genetic variation of Bcl-2 proteins and is vital in disrupting the apoptotic machinery.

View Article and Find Full Text PDF

Corrigendum: Viable but nonculturable state in the zoonotic pathogen induced by low-grade fever temperature and antibiotic treatment.

Front Cell Infect Microbiol

January 2025

Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.

[This corrects the article DOI: 10.3389/fcimb.2024.

View Article and Find Full Text PDF

In alignment with the global movement toward reducing animal testing, several reconstructed human epidermis (RHE) models have been created for conducting skin irritation tests. These models have undergone development, verification, validation, and integration into OECD TG 439. Our team has introduced a novel in-house RHE named GB-RHE, and we adhere to OECD TG 439 to pre-validate the model and test its potential employment for nanoparticle irritation studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!