Plant cells response to water deficit through a variety of physiological processes. In this work, we studied the function of microtubule cytoskeleton during dehydration/rehydration cycle in moss (Atrichum undulatum) protonemal cells as a model system. The morphological and cytological change of protonemal cells during dehydration and rehydration cycle were first investigated. Under normal conditions, protonemal cells showed bright green colour and appeared wet and fresh. Numerous chloroplasts distributed regularly throughout the cytoplasm in each cell. After dehydration treatment, protonemal cells lost most of their chlorophylls and turned to look yellow and dry. In addition, dehydration caused plasmolysis in these cells. Upon rehydration, the cells could recover completely from the dehydrated state. These results indicated that moss had a remarkable intrinsic ability to survive from the extreme drought stress. Microtubule, an important component of cytoskeleton, is considered to play crucial roles in the responses to some environmental stresses such as cold and light. To see if it is also involved in the drought tolerance, dynamic organization of microtubules in protonemal cells of Atrichum undulatum subjected to drought and rehydration were examined by indirect immunofluorescence combined with confocal lasersharp scanning microscopy. The cortical microtubules were arranged into a fine structure with a predominant orientation parallel to the long axis of the cells in the control cells. After dehydration, the microtubule organization was remarkablly altered and the fine microtubule structure disappeared whereas some thicker cables formed. When the cells were grown under rehydration conditions, the fine microtubule arrays reappeared. These results provided a piece of evidence that microtubules play a role in the cellular responses to drought stress in moss. Furthermore, we analyzed the effects of the microtubule-disrupting agent colchicine on the morphology recovery of the protonemal cells during rehydration process. The cells were incubated with colchicine, followed by drought stress treatment and rehydration in the presence of colchicine to prevent recovery of microtubule organization. Results from immunofluorescence showed that microtubule arrays were broken down into smaller fragments. Compared to the cells treated with drought stress alone, the cells treated with drought stress in the presence of colchicine could not recover after rehydration treatment. The morphology resembled those of the drought treated cells, with obvious plasmolysis phenomena and loss of chlorophyll content. These results support the notion that microtubules were involved in the deccication tolerance mechanism in Atrichum undulatum.
Download full-text PDF |
Source |
---|
Sci Adv
December 2024
Department of Biological Sciences, University of Rhode Island, Kingston, RI 02881, USA.
Similar to cellulose synthases (CESAs), cellulose synthase-like D (CSLD) proteins synthesize β-1,4-glucan in plants. CSLDs are important for tip growth and cytokinesis, but it was unknown whether they form membrane complexes in vivo or produce microfibrillar cellulose. We produced viable CESA-deficient mutants of the moss to investigate CSLD function without interfering CESA activity.
View Article and Find Full Text PDFFront Plant Sci
November 2023
Department of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido, Japan.
Abscisic acid (ABA)-mediated abiotic stress tolerance causes plant growth inhibition. Under such stress conditions, some mosses generate stress-resistant stem cells, also called brood cells or brachycytes, that do not exist under normal conditions. However, the cell physiological basis of the growth inhibition and the stem cell formation is not well understood.
View Article and Find Full Text PDFComp Cytogenet
October 2023
Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St. Petersburg, 199034, Russia Zoological Institute, Russian Academy of Sciences St. Petersburg Russia.
It is demonstrated that the initial method of fertilization in animals (Metazoa), embryophyte plants (Embryophyta), most groups of multicellular oogamous algae, oogamous and pseudoogamous multicellular fungi was internal fertilization (in the broad meaning) in/on the body of a maternal organism. Accordingly, during the bisexual process, the initial method of formation of a daughter multicellular organism in animals was viviparity, and in embryophyte plants and most groups of oogamous multicellular algae - the germination of a zygote in/on the body of maternal organism. The reproductive criteria of multicellularity are proposed and discussed.
View Article and Find Full Text PDFPlant Cell Physiol
September 2023
Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8602 Japan.
Plant cells lack centrosomes and instead utilize acentrosomal microtubule organizing centers (MTOCs) to rapidly increase the number of microtubules at the onset of spindle assembly. Although several proteins required for MTOC formation have been identified, how the MTOC is positioned at the right place is not known. Here, we show that the inner nuclear membrane protein SUN2 is required for MTOC association with the nuclear envelope (NE) during mitotic prophase in the moss Physcomitrium patens.
View Article and Find Full Text PDFCell Rep
February 2023
Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany. Electronic address:
RHO guanosine triphosphatases are important eukaryotic regulators of cell differentiation and behavior. Plant ROP (RHO of plant) family members activate specific, incompletely characterized downstream signaling. The structurally simple land plant Physcomitrium patens is missing homologs of key animal and flowering plant RHO effectors but contains a single CRIB (CDC42/RAC interactive binding)-domain-containing RIC (ROP-interacting CRIB-containing) protein (PpRIC).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!