AI Article Synopsis

  • The iron(II) low-spin complex [Fe(bpy)3]2+ has an estimated zero-point energy difference between high-spin and low-spin states ranging from 2500-5000 cm(-1), based on relaxation dynamics following light-induced high-spin state population.
  • Experimental data suggest the bond-length difference between these states is about 0.2 Å, aligning well with DFT calculations that validate the structural assumptions.
  • Comparison of various density functionals reveals RPBE and B3LYP* functionals provide the best agreement with experimental estimates for the energy difference between high-spin and low-spin states.

Article Abstract

In the iron(II) low-spin complex [Fe(bpy)3]2+, the zero-point energy difference between the 5T2g(t4(2g)e2g) high-spin and the 1A(1g)(t(6)2g) low-spin states, Delta(E)0HL, is estimated to lie in the range of 2500-5000 cm(-1). This estimate is based on the low-temperature dynamics of the high-spin-->low-spin relaxation following the light-induced population of the high-spin state and on the assumption that the bond-length difference between the two states Delta(r)HL is equal to the average value of approximately 0.2 A, as found experimentally for the spin-crossover system. Calculations based on density functional theory (DFT) validate the structural assumption insofar as the low-spin-state optimised geometries are found to be in very good agreement with the experimental X-ray structure of the complex and the predicted high-spin geometries are all very close to one another for a whole series of common GGA (PB86, PW91, PBE, RPBE) and hybrid (B3LYP, B3LYP*, PBE1PBE) functionals. This confirmation of the structural assumption underlying the estimation of Delta(E)0HL from experimental relaxation rate constants permits us to use this value to assess the ability of the density functionals for the calculation of the energy difference between the HS and LS states. Since the different functionals give values from -1000 to 12000 cm(-1), the comparison of the calculated values with the experimental estimate thus provides a stringent criterion for the performance of a given functional. Based on this comparison the RPBE and B3LYP* functionals give the best agreement with experiment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cphc.200400584DOI Listing

Publication Analysis

Top Keywords

energy difference
12
density functionals
8
difference states
8
structural assumption
8
functionals
5
assessment density
4
functionals high-spin/low-spin
4
high-spin/low-spin energy
4
difference
4
difference low-spin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!