Several experimental approaches were used to construct a detailed transcriptional profile of the phylogenetically conserved ftsZ cell division gene cluster in both Mycoplasma genitalium and its closest relative, Mycoplasma pneumoniae. We determined initiation and termination points for the cluster, as well as an absolute steady-state RNA level for each gene. Transcription of this cluster in both these organisms was shown to be highly strand specific. While the four genes in this cluster are cotranscribed, their transcription unit also includes two genes of close proximity yet disparate function. A transcription initiation point immediately upstream of these two genes was detected in M. genitalium but not M. pneumoniae. In M. pneumoniae, transcription of the six genes terminates at a poly(U)-tailed hairpin. In M. genitalium, this transcription terminates at two closely spaced points by an unknown mechanism. Real-time reverse transcription-PCR analysis of this cluster in M. pneumoniae shows that mRNA levels for all six genes vary at most fivefold and form a gradient of decreasing quantity with increasing distance from the promoter at the beginning of the cluster. mRNA from coding regions was approximately 20- to 100-fold more abundant than that from intergenic regions. We estimated the most abundant mRNA we detected at 0.6 copy per cell. We conclude that groups of functionally related genes in M. genitalium and M. pneumoniae are often preceded by promoters but rarely followed by terminators. This causes functionally unrelated genes to be commonly cotranscribed in these organisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1151755PMC
http://dx.doi.org/10.1128/JB.187.13.4542-4551.2005DOI Listing

Publication Analysis

Top Keywords

conserved ftsz
8
gene cluster
8
cluster mycoplasma
8
mycoplasma genitalium
8
mycoplasma pneumoniae
8
genitalium pneumoniae
8
cluster
7
genes
7
pneumoniae
6
genitalium
5

Similar Publications

Bacterial cytokinesis begins with polymerization of the tubulin homologue FtsZ into a ring-like structure at midcell, the Z-ring, which recruits the late cell division proteins that synthesize the division septum. Assembly of FtsZ is carefully regulated and supported by a dozen conserved cell division proteins. Generally, these proteins are not essential, but removing more than one is in many cases lethal.

View Article and Find Full Text PDF

In most bacteria, cell division depends on the tubulin-homolog FtsZ that polymerizes in a GTP-dependent manner to form the cytokinetic Z-ring at the future division site. Subsequently, the Z-ring recruits, directly or indirectly, all other proteins of the divisome complex that executes cytokinesis. A critical step in this process is the precise positioning of the Z-ring at the future division site.

View Article and Find Full Text PDF

Molecular detection and characterization of Anaplasmataceae agents, Bartonella spp. and hemoplasmas in armadillos and anteaters from Brazil.

Acta Trop

December 2024

Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction, and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University "Júlio de Mesquita Filho" (FCAV/UNESP), Jaboticabal Campus, Via de Acesso Prof. Paulo Donato Castellane, s/n, Rural Zone, Jaboticabal, SP, CEP: 14884-900, Brazil. Electronic address:

Article Synopsis
  • Armadillos and anteaters interact with various pathogens and parasites, making them potential hosts for zoonotic diseases, but research on these interactions is limited.
  • A study in Brazil analyzed 167 samples from different species of armadillos and anteaters to identify occurrences of pathogens like Ehrlichia, Anaplasma, Bartonella, and hemoplasmas.
  • Results showed low detection rates, with only one positive sample each for Anaplasma in six-banded armadillos and Ehrlichia in giant anteaters, indicating the need for further research on disease dynamics in these mammals.
View Article and Find Full Text PDF

Bacterial cytokinesis commences when a tubulin-like GTPase, FtsZ, forms a Z-ring to mark the division site. Synchronized movement of Z-ring filaments and peptidoglycan synthesis along the axis of division generates a division septum to separate the daughter cells. Thus, FtsZ needs to be linked to the peptidoglycan synthesis machinery.

View Article and Find Full Text PDF

Essential genes are crucial for microbial viability, playing key roles in both the primary and secondary metabolism. Since mutations in these genes can threaten organism viability, identifying them is challenging. Conditionally essential genes are required only under specific conditions and are important for functions such as virulence, immunity, stress survival, and antibiotic resistance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!