Several experimental approaches were used to construct a detailed transcriptional profile of the phylogenetically conserved ftsZ cell division gene cluster in both Mycoplasma genitalium and its closest relative, Mycoplasma pneumoniae. We determined initiation and termination points for the cluster, as well as an absolute steady-state RNA level for each gene. Transcription of this cluster in both these organisms was shown to be highly strand specific. While the four genes in this cluster are cotranscribed, their transcription unit also includes two genes of close proximity yet disparate function. A transcription initiation point immediately upstream of these two genes was detected in M. genitalium but not M. pneumoniae. In M. pneumoniae, transcription of the six genes terminates at a poly(U)-tailed hairpin. In M. genitalium, this transcription terminates at two closely spaced points by an unknown mechanism. Real-time reverse transcription-PCR analysis of this cluster in M. pneumoniae shows that mRNA levels for all six genes vary at most fivefold and form a gradient of decreasing quantity with increasing distance from the promoter at the beginning of the cluster. mRNA from coding regions was approximately 20- to 100-fold more abundant than that from intergenic regions. We estimated the most abundant mRNA we detected at 0.6 copy per cell. We conclude that groups of functionally related genes in M. genitalium and M. pneumoniae are often preceded by promoters but rarely followed by terminators. This causes functionally unrelated genes to be commonly cotranscribed in these organisms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1151755 | PMC |
http://dx.doi.org/10.1128/JB.187.13.4542-4551.2005 | DOI Listing |
PLoS Genet
January 2025
Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle, United Kingdom.
Bacterial cytokinesis begins with polymerization of the tubulin homologue FtsZ into a ring-like structure at midcell, the Z-ring, which recruits the late cell division proteins that synthesize the division septum. Assembly of FtsZ is carefully regulated and supported by a dozen conserved cell division proteins. Generally, these proteins are not essential, but removing more than one is in many cases lethal.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg 35043, Germany.
In most bacteria, cell division depends on the tubulin-homolog FtsZ that polymerizes in a GTP-dependent manner to form the cytokinetic Z-ring at the future division site. Subsequently, the Z-ring recruits, directly or indirectly, all other proteins of the divisome complex that executes cytokinesis. A critical step in this process is the precise positioning of the Z-ring at the future division site.
View Article and Find Full Text PDFActa Trop
December 2024
Vector-Borne Bioagents Laboratory (VBBL), Department of Pathology, Reproduction, and One Health, School of Agricultural and Veterinary Sciences, São Paulo State University "Júlio de Mesquita Filho" (FCAV/UNESP), Jaboticabal Campus, Via de Acesso Prof. Paulo Donato Castellane, s/n, Rural Zone, Jaboticabal, SP, CEP: 14884-900, Brazil. Electronic address:
Mol Biol Cell
January 2025
Department of Molecular Biosciences, University of South Florida, Tampa, FL 33620.
Bacterial cytokinesis commences when a tubulin-like GTPase, FtsZ, forms a Z-ring to mark the division site. Synchronized movement of Z-ring filaments and peptidoglycan synthesis along the axis of division generates a division septum to separate the daughter cells. Thus, FtsZ needs to be linked to the peptidoglycan synthesis machinery.
View Article and Find Full Text PDFInt J Mol Sci
October 2024
Department of Functional Biology, Microbiology Area, IUOPA and ISPA, Faculty of Medicine, Universidad de Oviedo, 33006 Oviedo, Spain.
Essential genes are crucial for microbial viability, playing key roles in both the primary and secondary metabolism. Since mutations in these genes can threaten organism viability, identifying them is challenging. Conditionally essential genes are required only under specific conditions and are important for functions such as virulence, immunity, stress survival, and antibiotic resistance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!