The synaptic vesicle protein Rab3A is a small GTP-binding protein that interacts with rabphilin and RIM1alpha, two presynaptic substrates of protein kinase A (PKA). Mice lacking RIM1alpha and Rab3A have a defect in PKA-dependent and NMDA receptor (NMDAR)-independent presynaptic long-term potentiation (LTP) at hippocampal mossy-fiber and cerebellar parallel-fiber synapses. In contrast, the NMDAR-dependent and PKA-independent early phase of LTP at hippocampal CA3-CA1 synapses does not require these presynaptic proteins. Here, we ask whether Rab3A and RIM1alpha participate in forms of LTP that require both PKA and NMDAR activation. We find that Rab3A is necessary for corticoamygdala LTP and late-phase LTP at CA3-CA1 synapses, two forms of LTP that require NMDAR and PKA activation. The latter form of LTP also requires RIM1alpha. These results provide genetic evidence that presynaptic proteins are required in LTP induced through the postsynaptic activation of NMDARs. Thus Rab3A and its effectors are general modules for four distinct types of PKA-dependent LTP in the brain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1166627PMC
http://dx.doi.org/10.1073/pnas.0503777102DOI Listing

Publication Analysis

Top Keywords

ltp
9
genetic evidence
8
ltp hippocampal
8
ca3-ca1 synapses
8
presynaptic proteins
8
forms ltp
8
ltp require
8
presynaptic
5
rab3a
5
evidence protein-kinase-a-mediated
4

Similar Publications

Electrophysiology-based screening identifies neuronal HtrA serine peptidase 2 (HTRA2) as a synaptic plasticity regulator participating in tauopathy.

Transl Psychiatry

January 2025

Xiamen Key Laboratory of Brain Center, The First Affiliated Hospital of Xiamen University, and Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.

Long-term potentiation (LTP) and long-term depression (LTD) are widely used to study synaptic plasticity. However, whether proteins regulating LTP and LTD are altered in cognitive disorders and contribute to disease onset remains to be determined. Herein, we induced LTP and LTD in the hippocampal CA3-CA1 Schaffer collateral pathway, respectively, and then performed proteomic analysis of the CA1 region.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is the neuro-developmental disorder caused by various changes in the brain. It affects the life conditions with social interaction and communication. Most of the previous researches used the various techniques for the early detection to reduce the ASD, but it had been occurred several complications such as, time expenses, and low accessibility for diagnosis.

View Article and Find Full Text PDF

Oppositional and competitive instigation of hippocampal synaptic plasticity by the VTA and locus coeruleus.

Proc Natl Acad Sci U S A

January 2025

Department of Neurophysiology, Medical Faculty, Ruhr University Bochum, Bochum 44780, Germany.

The novelty, saliency, and valency of ongoing experiences potently influence the firing rate of the ventral tegmental area (VTA) and the locus coeruleus (LC). Associative experience, in turn, is recorded into memory by means of hippocampal synaptic plasticity that is regulated by noradrenaline sourced from the LC, and dopamine, sourced from both the VTA and LC. Two persistent forms of synaptic plasticity, long-term potentiation (LTP), and long-term depression (LTD) support the encoding of different kinds of spatial experience.

View Article and Find Full Text PDF

The Internet of Things (IoT) has recently attracted substantial interest because of its diverse applications. In the agriculture sector, automated methods for detecting plant diseases offer numerous advantages over traditional methods. In the current study, a new model is developed to categorize plant diseases within an IoT network.

View Article and Find Full Text PDF

: Omega-3 long-chain polyunsaturated fatty acids (PUFAs) support brain cell membrane integrity and help mitigate synaptic plasticity deficits. The endocannabinoid system (ECS) is integral to synaptic plasticity and regulates various brain functions. While PUFAs influence the ECS, the effects of omega-3 on the ECS, cognition, and behavior in a healthy brain remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!