AI Article Synopsis

  • The challenge of intragenic heterogeneity in dominant disease-causing genes complicates the development of effective and affordable treatments, as seen in autosomal dominant retinitis pigmentosa caused by numerous rhodopsin mutations.
  • An RNA interference (RNAi)-based method is proposed that can target the problematic native transcripts without affecting engineered replacement genes, suggesting a mutation-independent therapeutic strategy.
  • Experiments show that this RNAi approach can reduce murine rhodopsin levels by up to 90% while still allowing the expression of the replacement genes, validating its effectiveness in cell cultures and live mouse models.

Article Abstract

The intragenic heterogeneity encountered in many dominant disease-causing genes represents a significant challenge with respect to development of economically viable therapeutics. For example, 25% of autosomal dominant retinitis pigmentosa is caused by over 100 different mutations within the gene encoding rhodopsin, each of which could require a unique gene therapy. We describe here an RNA interference (RNAi)-based mutation-independent approach, targeting as an example murine rhodopsin. Native transcripts are suppressed by a single RNAi molecular species, whereas transcripts from replacement genes engineered at degenerate third-codon wobble positions are resistant to suppression. We demonstrate suppression of murine rhodopsin transcript by up to 90% with full concomitant expression of replacement transcript and establish the validity of this approach in cell culture, retinal explants, and mouse liver in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymthe.2005.03.028DOI Listing

Publication Analysis

Top Keywords

gene therapy
8
mutation-independent approach
8
murine rhodopsin
8
therapy dominant
4
dominant disease
4
disease validation
4
validation rna
4
rna interference-based
4
interference-based mutation-independent
4
approach intragenic
4

Similar Publications

Study Question: Is elevated plasma molybdenum level associated with increased risk for idiopathic premature ovarian insufficiency (POI)?

Summary Answer: Elevated plasma molybdenum level is associated with an increased risk of idiopathic POI through vascular endothelial injury and inhibition of granulosa cell proliferation.

What Is Known Already: Excessive molybdenum exposure has been associated with ovarian oxidative stress in animals but its role in the development of POI remains unknown.

Study Design, Size, Duration: Case-control study of 30 women with idiopathic POI and 31 controls enrolled from August 2018 to May 2019.

View Article and Find Full Text PDF

Purpose: overexpression/amplification in wild-type (WT) metastatic colorectal cancer (mCRC; human epidermal growth factor receptor 2 [HER2]-positive mCRC) appears to be associated with limited benefit from anti-EGFR antibodies and promising responses to dual-HER2 inhibition; however, comparative efficacy has not been investigated. We conducted a randomized phase II trial to evaluate efficacy and safety of dual-HER2 inhibition against standard-of-care anti-EGFR antibody-based therapy as second/third-line treatment in HER2-positive mCRC.

Methods: Patients with -WT mCRC after central confirmation of HER2 positivity (immunohistochemistry 3+ or 2+ and in situ hybridization amplified [HER2/CEP17 ratio >2.

View Article and Find Full Text PDF

Adeno-associated virus (AAV)-associated gene therapy has been increasingly promising, in light of the drugs progressed to clinical trials or approved for medications internationally. Therefore, scalable and efficient production of recombinant AAV is pivotal for advancing gene therapy. Traditional methods, such as the triple-plasmid transfection of human embryonic kidney 293 cells in suspension culture, have been widely employed but often hampered by low unit yield.

View Article and Find Full Text PDF

Regenerative Potential of Neural Stem/Progenitor Cells for Bone Repair.

Tissue Eng Part B Rev

January 2025

Research Unit in Mineralized Tissue Reconstruction and Faculty of Dentistry, Thammasat University, Pathum Thani, Thailand.

The increasing number of elderly people across the globe has led to a rise in osteoporosis and bone fractures, significantly impacting the quality of life and posing substantial health and economic burdens. Despite the development of tissue-engineered bone constructs and stem cell-based therapies to address these challenges, their efficacy is compromised by inadequate vascularization and innervation during bone repair. Innervation plays a pivotal role in tissue regeneration, including bone repair, and various techniques have been developed to fabricate innervated bone scaffolds for clinical use.

View Article and Find Full Text PDF

Gliclazide is a sulfonylurea hypoglycemic agent used to treat type 2 diabetes. Cytochrome P450 (CYP) 2C9 and CYP2C19 are primarily involved in the hepatic metabolism of gliclazide. The two CYP isozymes are highly polymorphic, and their genetic polymorphisms are known to significantly impact the pharmacokinetics of gliclazide.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!