Mutation analysis of the ATP7B gene and genotype/phenotype correlation in 227 patients with Wilson disease.

Mol Genet Metab

Center of Molecular Biology and Gene Therapy, University Hospital Brno, Cernopolni 9, 625 00 Brno, Czech Republic.

Published: January 2006

AI Article Synopsis

  • Wilson disease (WD) is a genetic disorder affecting copper transport, linked to mutations in the ATP7B gene, leading to various clinical symptoms like liver and neurological issues.
  • A study analyzed mutations in 227 patients from the Czech Republic and Slovakia, identifying over 80% of mutant alleles, with the most common mutation being H1069Q, found in 57% of alleles.
  • The research discovered 13 new mutations and suggests that testing for five specific prevalent mutations could detect 70% of cases, aiding in early diagnosis and classification of WD.

Article Abstract

Wilson disease (WD) is an autosomal recessive disorder of copper transport. WD patients are presenting with a wide range of heterogeneous clinical syndromes including hepatic, neurological, or psychiatric presentations. The disease is caused by mutations in the ATP7B gene. This study presents the results of comprehensive mutation analysis in 227 WD patients from 200 unrelated families (173 from Czech Republic and 27 from Slovakia). More than 80% of all mutant alleles were identified, using a combination of PCR/RFLP, DGGE, TTGE, DHPLC, and sequencing. A total of 40 different mutations and 18 polymorphisms were detected on 400 independent mutant chromosomes. The most common molecular defect was H1069Q (57% of all 400 studied alleles). Each of the other 39 mutations was present in no more than 4% of WD alleles and 23 mutations were found in only one WD allele each (0.25%). Thirteen novel mutations were identified, including seven missense mutations (L641S, T737R, D918E, T1033S, G1111D, D1271N, and G1355C), four small deletions (19_20delCA, 1518_1522del5, 3140delA, and 3794_3803del10), and two splice-site mutations (2446-2A>G, 2865+1G>A). We did not find a significant correlation between H1069Q homozygosity and age of onset, and clinical and biochemical manifestation. Our data provide evidence that the H1069Q mutation-the most common molecular defect of the ATP7B gene in the Caucasian population-originates from Central/Eastern Europe. Screening of five prevalent mutations is predicted to reveal 70% of all mutant alleles presented in WD patients. This will provide a good starting point for early clinical classification of WD in our population.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymgme.2005.05.004DOI Listing

Publication Analysis

Top Keywords

atp7b gene
12
mutation analysis
8
227 patients
8
wilson disease
8
mutations
8
mutant alleles
8
common molecular
8
molecular defect
8
alleles mutations
8
analysis atp7b
4

Similar Publications

The pathophysiology of dystonia in Wilson disease (WD) is complex and poorly understood. Copper accumulation in the basal ganglia, disrupts dopaminergic pathways, contributing to dystonia's development via neurotransmitter imbalance. Despite advances in diagnosis and management, WD with dystonia remains a challenging condition to treat.

View Article and Find Full Text PDF

Copper (Cu) dysregulation, often stemming from ATP7B gene mutations, exacerbates neurological disorders like Huntington's, Alzheimer's, and Parkinson's diseases. Monoisoamyl 2,3-dimercaptosuccinic acid (MiADMSA) shows promise in mitigating Cu induced neurotoxicity by chelating intracellular Cu ions, reducing oxidative stress, and restoring antioxidant enzyme function. However, challenges such as poor bioavailability hinder its therapeutic efficacy.

View Article and Find Full Text PDF

Immune infiltration plays a significant role in the pathogenesis of rheumatoid arthritis (RA). Cuproptosis, a newly characterized form of programmed cell death, remains insufficiently investigated regarding its genetic regulation of immune infiltration in RA. Data from the GEO database were analyzed to determine the relationship between cuproptosis-related genes and immune infiltration.

View Article and Find Full Text PDF

Metallothionein rescues doxorubicin cardiomyopathy via mitigation of cuproptosis.

Life Sci

January 2025

Department of Cardiology, Cardiac Arrhythmia Center, Affiliated Hospital of Nantong University, Nantong 226001, China. Electronic address:

Doxorubicin (DOX), a chemotherapeutic agent utilized in the management of cancer, provokes cardiotoxicity although effective remedy is lacking. Given that DOX provokes oxidative stress and cell death in cardiomyocytes, this study evaluated the possible involvement of cuproptosis, a newly identified form of cell death, in DOX-instigated cardiac remodeling and contractile dysfunction, alongside the impact of the heavy metal scavenger metallothionein (MT) on DOX cardiomyopathy. Cardiac-specific MT transgenic and wild-type (WT) mice were treated with DOX (5 mg/kg/wk.

View Article and Find Full Text PDF

Wilson's disease (WD) (OMIM 277900) or hepatolenticular degeneration is an autosomal recessive disorder caused by impaired copper excretion with subsequent accumulation in the liver, brain, and other tissues of the body. The defects in copper metabolism are based on various pathogenic variants of the ATP7B gene encoding copper-transporting P-type ATPase. The aim of this work is to search for pathogenic variants of the ATP7B gene among Eastern Eurasian patient cohorts and to pick correlations between pathogenic variants, gender, age of onset of the disease, and the course of the disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!