A quantitative, one-step, competitive electrochemiluminescence (ECL)-based immunoassay for the determination of a fully human, anti-TNFalpha monoclonal antibody in human serum has been developed. A biotinylated, mouse anti-variable region-specific antibody and a ruthenium-labeled anti-TNFalpha antibody were the only specific reagents needed to develop the assay. A single incubation step of 2 h followed by ECL detection was used. The assay was capable of measuring the analyte in neat serum over approximately a 1600-fold range with higher concentrations measured following a single dilution. Assay accuracy, precision, and reproducibility were suitable to support pharmacokinetic studies of the analyte. This competitive assay format offers an alternative approach to the development of immunoassays for the measurement of macromolecules in complex matrices to support preclinical and clinical studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jpba.2005.01.036DOI Listing

Publication Analysis

Top Keywords

one-step competitive
8
fully human
8
human anti-tnfalpha
8
anti-tnfalpha antibody
8
antibody human
8
human serum
8
competitive electrochemiluminescence-based
4
electrochemiluminescence-based immunoassay
4
immunoassay method
4
method quantification
4

Similar Publications

One Step Visual Homogeneous Immunoassay of a Rheumatoid Arthritis Biomarker in Serum via Target-Regulated Steric Hindrance and Competitive Recognition.

Anal Chem

January 2025

Department of Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Med+X Center for Manufacturing, Department of Rheumatology & Immunology, National Clinical Research Center for Geriatrics, Department of Gynecology of West China Tianfu Hospital, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.

Homogeneous analysis techniques offer several advantages as alternatives to heterogeneous immunoassays, such as simplicity and rapidity. In this study, a visual homogeneous immunoassay without a labeling process was developed based on target-induced steric hindrance to regulate competitive recognition mechanism. Specifically, as the analyte concentration varies, the change of microenvironment based on steric hindrance could affect the recognition of Cu by signal probes.

View Article and Find Full Text PDF

A novel importance scores based variable selection approach and validation using a MIR and NIR dataset.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

School of Pharmacy and Food Engineering, Wuyi University, Jiangmen 529020, PR China. Electronic address:

Variable selection is important in spectral analysis for improving interpretation quality and accuracy. This study introduces a novel variable selection process, named "VMHBSC", which consists of six steps, with each letter representing one step. To demonstrate its process and advantages, two datasets were employed, a mid-infrared spectral (MIR) dataset (234 × 7468, sample number × variables) of Chenpi samples (a traditional Chinese medicinal material derived from the dried peel of mature tangerines) and a near-infrared spectral (NIR) dataset (16000 × 256) for modeling competition.

View Article and Find Full Text PDF

General procedures for the rhodium-catalyzed annulation of aryl/heteroaryl -pivaloyl hydroxamic acids and norbornadiene have been developed. Employing norbornadiene as an acetylene equivalent enables utilization of diverse heterocyclic substrates for this transformation which fail to react or undergo competitive Lossen rearrangement under previously reported conditions. Microwave heating significantly reduces reaction times compared to conventional protocols and allows a one-step process to be realized.

View Article and Find Full Text PDF

The chemical industry can now seize the opportunity to improve the sustainability of its processes by replacing fossil carbon sources with renewable alternatives such as CO, biomass, and plastics, thereby thinking ahead and having a look into the future. For their conversion to intermediate and final products, different types of catalysts-microbial, enzymatic, and organometallic-can be applied. The first part of this review shows how these catalysts can work separately in parallel, each route with unique requirements and advantages.

View Article and Find Full Text PDF

Deciphering the surface electrochemical reconstruction of ruthenium-cobalt-nickel phosphide for efficient high-current hydrogen evolution and overall water splitting.

J Colloid Interface Sci

April 2025

Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources of Ministry of Education, Wuhan University of Technology, Wuhan, Hubei 430073, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430073, China. Electronic address:

Article Synopsis
  • Efficient bifunctional transition metal phosphide catalysts, specifically RuCo co-doped NiP (RuCoNiP), were designed to improve hydrogen production technologies through one-step electrodeposition.
  • The resulting structures, RuCoNiP@α-Ni(OH) and RuCoNiP@Co/Ni(OH), exhibited enhanced hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) activities and stabilities due to optimized adsorption properties and reduced energy barriers.
  • A dual-electrode system utilizing RuCoNiP@α-Ni(OH) and RuCoNiP@Co/Ni(OH) achieved ultra-low battery voltage and impressive stability, highlighting the potential of this synthetic approach for efficient water-s
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!