Early investigations into the insulin-like growth factor (IGF)-independent actions of insulin-like growth factor-binding protein (IGFBP)-3 have implicated a large array of signaling proteins with links to cell cycle control and apoptosis. However, the actual mechanism of IGFBP-3 action is still unclear. In an effort to clearly understand the mechanism of IGF-independent IGFBP-3 actions, a proteomic approach to identify the actual proteins involved in interaction with IGFBP-3 from different cell compartments, the phosphorylation status of IGFBP-3 under different physiologic conditions and the proteins upregulated by IGFBP-3 are briefly reviewed. The IGF system is a well-recognized key player in diseases such as cancer, diabetes and malnutrition. It is only after the signaling pathways of the IGF-independent actions of IGFBP-3 are clearly understood that the system can be manipulated to affect these disorders.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1586/14789450.2.1.71 | DOI Listing |
Biomolecules
November 2024
School of Health and Life Sciences, University of the West of Scotland, Hamilton G72 0LH, UK.
Insulin-like growth factor-binding protein-1 (IGFBP-1) contributes to the regulation of IGFs for metabolism and growth and has IGF-independent actions. IGFBP-1 in the circulation is derived from the liver, where it is inhibited by insulin and stimulated by multiple factors, including proinflammatory cytokines. IGFBP-1 levels are influenced by sex and age, which also determine cardiometabolic risk and patterns of disease presentation.
View Article and Find Full Text PDFEur J Pharmacol
April 2024
Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan. Electronic address:
Fluoroquinolones (FQs), commonly known for their antibiotic properties, exhibit additional pharmacological potential with anti-proliferative effects on various malignant cell types and immunomodulatory responses. Despite these observed effects, the precise mechanisms of action remain elusive. This study elucidates the biological impact of FQs on insulin-like growth factor-binding protein 3 (IGFBP-3) productions in a p53-dependent manner.
View Article and Find Full Text PDFFront Oncol
November 2022
Biology Department, San Diego State University, San Diego, CA, United States.
Insulin-like growth factor binding proteins (IGFBPs) and the associated signaling components in the insulin-like growth factor (IGF) pathway regulate cell differentiation, proliferation, apoptosis, and adhesion. Of the IGFBPs, insulin-like growth factor binding protein 5 (IGFBP5) is the most evolutionarily conserved with a dynamic range of IGF-dependent and -independent functions, and studies on the actions of IGFBP5 in cancer have been somewhat paradoxical. In cancer, the IGFBPs respond to external stimuli to modulate disease progression and therapeutic responsiveness in a context specific manner.
View Article and Find Full Text PDFEur J Transl Myol
September 2022
Mayflower Organization for Research and Education, Sunnyvale, CA.
Immodulins are synthetic peptides derived from the C-terminal domains of insulin-like growth factor binding proteins (IGFBPs). Immodulins from the 3/5/6 (but not 1/2/4) IGFBP evolutionary clade transduce extracellular matrix (ECM) signals to RXR, NR4A1 and PPAR-alpha nuclear receptors (NRs) to stimulate novel macrophage lineages. The rationale of this study was to reconcile physical associations of immodulins with ECM and NRs, effects of siRNAs and chemical inhibitors in vivo, and immodulin-driven pro-differentiation effects in cell culture.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
September 2022
Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Haale (Saale), Germany.
The insulin-like growth factor receptor (IGF1R) pathway plays an important role in cancer progression. In breast cancer, the IGF1R pathway is linked to estrogen-dependent signaling. Regulation of IGF1R activity is complex and involves the actions of its ligands IGF1 and IGF2 and those of IGF-binding proteins (IGFBPs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!