Potential of proteomics towards the investigation of the IGF-independent actions of IGFBP-3.

Expert Rev Proteomics

Department of Pathology, Virginia Commonwealth University, School of Medicine, MCV Campus, Sanger Hall, Room 5-011, 1101 East Marshall Street, PO Box 980662, Richmond, Virginia 23298-0662, USA.

Published: January 2005

Early investigations into the insulin-like growth factor (IGF)-independent actions of insulin-like growth factor-binding protein (IGFBP)-3 have implicated a large array of signaling proteins with links to cell cycle control and apoptosis. However, the actual mechanism of IGFBP-3 action is still unclear. In an effort to clearly understand the mechanism of IGF-independent IGFBP-3 actions, a proteomic approach to identify the actual proteins involved in interaction with IGFBP-3 from different cell compartments, the phosphorylation status of IGFBP-3 under different physiologic conditions and the proteins upregulated by IGFBP-3 are briefly reviewed. The IGF system is a well-recognized key player in diseases such as cancer, diabetes and malnutrition. It is only after the signaling pathways of the IGF-independent actions of IGFBP-3 are clearly understood that the system can be manipulated to affect these disorders.

Download full-text PDF

Source
http://dx.doi.org/10.1586/14789450.2.1.71DOI Listing

Publication Analysis

Top Keywords

igf-independent actions
12
igfbp-3
8
actions igfbp-3
8
insulin-like growth
8
potential proteomics
4
proteomics investigation
4
igf-independent
4
investigation igf-independent
4
actions
4
igfbp-3 early
4

Similar Publications

Insulin-like growth factor-binding protein-1 (IGFBP-1) contributes to the regulation of IGFs for metabolism and growth and has IGF-independent actions. IGFBP-1 in the circulation is derived from the liver, where it is inhibited by insulin and stimulated by multiple factors, including proinflammatory cytokines. IGFBP-1 levels are influenced by sex and age, which also determine cardiometabolic risk and patterns of disease presentation.

View Article and Find Full Text PDF

Fluoroquinolones upregulate insulin-like growth factor-binding protein 3, inhibit cell growth and insulin-like growth factor signaling.

Eur J Pharmacol

April 2024

Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan; Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan. Electronic address:

Fluoroquinolones (FQs), commonly known for their antibiotic properties, exhibit additional pharmacological potential with anti-proliferative effects on various malignant cell types and immunomodulatory responses. Despite these observed effects, the precise mechanisms of action remain elusive. This study elucidates the biological impact of FQs on insulin-like growth factor-binding protein 3 (IGFBP-3) productions in a p53-dependent manner.

View Article and Find Full Text PDF

Insulin-like growth factor binding proteins (IGFBPs) and the associated signaling components in the insulin-like growth factor (IGF) pathway regulate cell differentiation, proliferation, apoptosis, and adhesion. Of the IGFBPs, insulin-like growth factor binding protein 5 (IGFBP5) is the most evolutionarily conserved with a dynamic range of IGF-dependent and -independent functions, and studies on the actions of IGFBP5 in cancer have been somewhat paradoxical. In cancer, the IGFBPs respond to external stimuli to modulate disease progression and therapeutic responsiveness in a context specific manner.

View Article and Find Full Text PDF

Immodulins are synthetic peptides derived from the C-terminal domains of insulin-like growth factor binding proteins (IGFBPs). Immodulins from the 3/5/6 (but not 1/2/4) IGFBP evolutionary clade transduce extracellular matrix (ECM) signals to RXR, NR4A1 and PPAR-alpha nuclear receptors (NRs) to stimulate novel macrophage lineages. The rationale of this study was to reconcile physical associations of immodulins with ECM and NRs, effects of siRNAs and chemical inhibitors in vivo, and immodulin-driven pro-differentiation effects in cell culture.

View Article and Find Full Text PDF

Biological effects and regulation of IGFBP5 in breast cancer.

Front Endocrinol (Lausanne)

September 2022

Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Haale (Saale), Germany.

The insulin-like growth factor receptor (IGF1R) pathway plays an important role in cancer progression. In breast cancer, the IGF1R pathway is linked to estrogen-dependent signaling. Regulation of IGF1R activity is complex and involves the actions of its ligands IGF1 and IGF2 and those of IGF-binding proteins (IGFBPs).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!