The chemiluminescent oxidation of ammonia with hypobromite in aqueous alkaline solution evokes a broadly distributed emission in the near-infrared region, with intensity maxima at 1055 nm and 1270 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1002/bio.870DOI Listing

Publication Analysis

Top Keywords

oxidation ammonia
8
aqueous alkaline
8
alkaline solution
8
near-infrared chemiluminescence
4
chemiluminescence oxidation
4
ammonia aqueous
4
solution chemiluminescent
4
chemiluminescent oxidation
4
ammonia hypobromite
4
hypobromite aqueous
4

Similar Publications

Building Localized NADP(H) Recycling Circuits to Advance Enzyme Cascadetronics.

Angew Chem Int Ed Engl

January 2025

University of Oxford, Chemistry, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

The catalytic action of enzymes of a cascade trapped within a mesoporous electrode material is simultaneously energized, controlled and observed through the efficient, reversible electrochemical NAD(P)(H) recycling catalyzed by one of the enzymes. In their nanoconfined state, nicotinamide cofactors are tightly channeled current carriers, mediating multi-step reactions in either direction (oxidation or reduction) with a rapid response time. By incorporating a hydrogen‑borrowing enzyme pair, the internal action of which opposes the external voltage bias driving oxidation or reduction, a reduction process can be performed under overall oxidizing conditions, and vice versa.

View Article and Find Full Text PDF

Laser absorption spectroscopy (LAS) is a well-established measurement technique for quantitative chemical speciation in a combustion environment. However, LAS measurement of nitric oxide (NO) in ammonia flames has never been reported in the literature. This is despite the community's recent strong interest in carbon-neutral ammonia combustion and the associated NO formation problem.

View Article and Find Full Text PDF

Discharge of wastewater containing nitrate (NO) disrupts aquatic ecosystems even at low concentrations. However, selective and rapid reduction of NO at low concentration to dinitrogen (N) is technically challenging. Here, we present an electrified membrane (EM) loaded with Sn pair-atom catalysts for highly efficient NO reduction to N in a single-pass electrofiltration.

View Article and Find Full Text PDF

Anaerobic ammonium oxidation (Anammox) has garnered significant attention due to its ability to eliminate the need for aeration and supplementary carbon sources in biological nitrogen removal process, relying on the capacity of anaerobic ammonium oxidizing bacteria (AnAOB) to directly convert ammonium and nitrite nitrogen into nitrogen gas. This review consolidates the latest advancements in AnAOB research, outlining the mechanisms and enzymatic processes of Anammox, and summarizing the molecular biological techniques used for studying AnAOB, such as 16s rRNA sequencing, qPCR, and metagenomic sequencing. Additionally, it also overviews the currently identified AnAOB species and their distinct metabolic traits, while consolidating strategies to improve their performance.

View Article and Find Full Text PDF

Hydrogen production via water-splitting or ammonia electrolysis using transition metal-based electrodes is one of the most cost-effective approaches. Herein, ca. 1-4% of Pt atoms are stuffed into a wolframite-type NiWO lattice to improve the electrocatalytic efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!