A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Substituent effects on heats of formation, group interactions, and detonation properties of polyazidocubanes. | LitMetric

We have calculated the heats of formation (HOFs) for a series of polyazidocubanes by using the density functional theory (DFT), Hartree-Fock, and MP2 methods with 6-31G* basis set as well as semiempirical methods. The cubane skeleton was chosen for a reference compound, that is, the cubane skeleton was not broken in the process of designing isodesmic reactions. There exists group additivity for the HOF with respect to the azido group. The semiempirical AM1 method also produced reliable results for the HOFs of the title compounds, but the semiempirical MINDO3 did not. The relationship between HOFs and molecular structures was discussed. It was found that the HOF increases 330-360 kJ/mol for each additional number of the azido group being added to the cubane skeleton. The distance between azido groups slightly influences the values of HOFs. The interacting energies of neighbor azido groups in polyazidocubanes are in the range of 2.3 approximately 6.6 kJ/mol, which are so small and less related to the substituent numbers. The average interaction energy between nearest neighbor --N3 groups in the most stable conformer of octaazidocubane is 2.29 kJ/mol at the B3LYP/6-31G* level. The relative stability related to the number of azido groups of the title compounds was assessed based on the calculated HOFs, the energy gaps between the frontier orbitals, and the bond orders of the C--N3 and C--C bonds. The predicted detonation velocity of hepta- and octa-derivatives is over 9 km/s, and the detonation pressure of them is ca. 40 GPa or over.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcc.20263DOI Listing

Publication Analysis

Top Keywords

cubane skeleton
12
azido groups
12
heats formation
8
azido group
8
title compounds
8
number azido
8
hofs
5
azido
5
substituent effects
4
effects heats
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!