Polymer scaffolds are obtained in which the geometric characteristics (pore size, connectivity, porosity) and the physico-chemical properties of the resulting material can be controlled in an independent way. The interconnected porous structure was obtained using a template of sintered PMMA microspheres of controlled size. Copolymerization of hydrophobic ethyl acrylate and hydrophilic hydroxyethyl methacrylate comonomers took place in the free space of the template, different comonomer ratio gave rise to different hydrophilicity degrees of the material keeping the same pore architecture. The morphology of the resulting scaffolds was investigated by scanning electron microscopy (SEM), the porosity of the material calculated, and the mechanical properties compared with those of the bulk (non porous) material of the same composition.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10856-005-2604-7DOI Listing

Publication Analysis

Top Keywords

acrylic scaffolds
4
scaffolds interconnected
4
interconnected spherical
4
spherical pores
4
pores controlled
4
controlled hydrophilicity
4
hydrophilicity tissue
4
tissue engineering
4
engineering polymer
4
polymer scaffolds
4

Similar Publications

The abundance of hyaluronic acid (HA) in human tissues attracts its thorough research in tissue regenerating scaffolds and 3D bioprintable hydrogel preparation. Though methacrylation of HA can lead to photo-crosslinkable hydrogels, the catalyst has toxicity concerns, and the hydrogel is not suitable for creating stable complex 3D structures using extrusion 3D bioprinting. In this study, a dual crosslinking on methacrylated HA is introduced, using cysteamine-grafted HA and varying concentrations of 2-hydroxy ethyl acrylate.

View Article and Find Full Text PDF

Additive Manufacturing of Binary and Ternary Oxide Systems Using Two-Photon Polymerization and Low-Temperature Sintering.

Nanomaterials (Basel)

December 2024

Univ. Lille, CNRS, UMR 8523-Physique des Lasers Atomes et Molécules (PhLAM), F-59000 Lille, France.

Multicomponent oxide systems have many applications in different fields such as optics and medicine. In this work, we developed new hybrid photoresists based on a combination of an organic acrylate resin and an inorganic sol, suitable for 3D printing via two-photon polymerization (2PP). The inorganic sol contained precursors of a binary SiO-CaO or a ternary SiO-CaO-PO system.

View Article and Find Full Text PDF

Improved design to imitate natural vascular scaffolds is critical in vascular tissue engineering (VTE). Smooth muscle cells originating from surrounding tissues require larger pore sizes relative to those of endothelial progenitor cells found in the bloodstream. Furthermore, biofunctionalized scaffolds mimic the microenvironment, cellular function, and tissue morphogenesis.

View Article and Find Full Text PDF

Graphene Oxide Functionalized GelMA Platform Loaded With BFP-1 for Osteogenic Differentiation of BMSCs.

J Biomed Mater Res A

January 2025

Department of Orthopedics, The Third Affiliated Hospital of Nanchang University, The First Hospital of Nanchang, Nanchang, Jiangxi, China.

Spinal fusion is the ultimate choice for most patients with severe disc degeneration, and bone tissue engineering offers novel strategies to improve intervertebral bone growth and fusion. In this study, we utilized graphene oxide (GO) and methacrylated gelatin (GelMA) to prepare GelMA/GO composite hydrogel scaffolds with different GO concentrations. By characterizing the various properties of the scaffolds, it was learned that the composite scaffold containing 1.

View Article and Find Full Text PDF

Enhancing epithelial regeneration with gelatin methacryloyl hydrogel loaded with extracellular vesicles derived from adipose mesenchymal stem cells for decellularized tracheal patching.

Int J Biol Macromol

January 2025

Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou 225001, China; Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, China.. Electronic address:

Article Synopsis
  • Patch tracheoplasty is an alternative technique for treating congenital tracheal stenosis, which reduces tension during repair but has a higher risk of complications like restenosis and tracheal collapse.
  • The study explores using a new decellularization method with CHAPS and DNase to create a biocompatible tracheal matrix and enhance epithelial regeneration using extracellular vesicles from adipose mesenchymal stem cells.
  • Experimental results showed that this method improved cell proliferation and re-epithelialization in both lab testing and animal models, indicating potential for clinical application in repairing tracheal defects.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!