Telomeres protect chromosome ends from fusion, degradation and recombination. Loss of telomere function has opposite effects on tumorigenesis: apoptosis, which inhibits tumour growth, and genomic instability, which accelerates tumour formation. Here we describe a new mechanism by which short telomeres inhibit tumorigenesis through interference with oncogenic translocations. In mice that are null for both ataxia-telangiectasia-mutated (Atm) and telomerase RNA (mTR), the first generation (G1) Atm-/- mTR-/- mice have a lower rate of tumour formation than Atm-/- mTR+/+ mice. These Atm-/- mTR-/- G1 tumours show no increase in either apoptosis or overall genomic instability. Strikingly, the tumours show a high fraction of translocations containing telomere signals at the translocation junctions. Translocations of the T-cell receptors on chromosome 14, which initiate tumorigenesis, were interrupted by fusion with telomeres. Telomere repeats were also detected at the translocation junctions in pre-malignant thymocytes. We propose that telomere fusion to DNA double-strand breaks competes with the generation of oncogenic translocations and thus reduces tumour formation.

Download full-text PDF

Source
http://dx.doi.org/10.1038/ncb1276DOI Listing

Publication Analysis

Top Keywords

tumour formation
16
oncogenic translocations
12
telomere fusion
8
genomic instability
8
atm-/- mtr-/-
8
translocation junctions
8
telomere
5
translocations
5
tumour
5
fusion chromosome
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!