The ability to find one's way depends on neural algorithms that integrate information about place, distance and direction, but the implementation of these operations in cortical microcircuits is poorly understood. Here we show that the dorsocaudal medial entorhinal cortex (dMEC) contains a directionally oriented, topographically organized neural map of the spatial environment. Its key unit is the 'grid cell', which is activated whenever the animal's position coincides with any vertex of a regular grid of equilateral triangles spanning the surface of the environment. Grids of neighbouring cells share a common orientation and spacing, but their vertex locations (their phases) differ. The spacing and size of individual fields increase from dorsal to ventral dMEC. The map is anchored to external landmarks, but persists in their absence, suggesting that grid cells may be part of a generalized, path-integration-based map of the spatial environment.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nature03721DOI Listing

Publication Analysis

Top Keywords

entorhinal cortex
8
map spatial
8
spatial environment
8
microstructure spatial
4
map
4
spatial map
4
map entorhinal
4
cortex ability
4
ability find
4
find one's
4

Similar Publications

Anxiety, a mental state in healthy individuals, is characterized by apprehension of potential future threats. Though the neurobiological basis of anxiety has been investigated widely in the clinical populations, the underly mechanism of neuroanatomical correlates with anxiety level in healthy young adults is still unclear. In this study, 1080 young adults were enrolled from the Human Connectome Project Young Adult dataset, and machine learning-based elastic net regression models with cross validation, together with linear mix effects (LME) models were adopted to investigate whether the neuroanatomical profiles of structural magnetic resonance imaging indicators associated with anxiety level in healthy young adults.

View Article and Find Full Text PDF

Unlabelled: The integration of olfactory and spatial information is critical for guiding animal behavior. The lateral entorhinal cortex (LEC) is reciprocally interconnected with cortical areas for olfaction and the hippocampus and thus ideally positioned to encode odor-place associations. Here, we used mini-endoscopes to record neural activity in the mouse piriform cortex (PCx) and LEC.

View Article and Find Full Text PDF

Hypertension, if untreated, can disrupt the blood-brain-barrier (BBB) and reduce cerebral flow in the central nervous system (CNS) inducing hippocampal atrophy, potentially leading to cognitive deficits and vascular dementia. Spontaneous hypertensive rats (SHR) demonstrated neuroplastic alterations in the hippocampus, hyperlocomotion and memory deficits in males. Cerebrolysin (CBL), a neuropeptide preparation, induces synaptic and neuronal plasticity in various populations of neurons and repairs the integrity of the BBB.

View Article and Find Full Text PDF

The impact of cortical and subcortical volumes on major depression risk: A genetic study.

J Affect Disord

January 2025

Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi, Jiangsu 214151, China. Electronic address:

Objective: This study aimed to explore the causal relationship between brain cortical and subcortical structures and major depressive disorder (MDD) using the Mendelian Randomization (MR) method.

Methods: Single nucleotide polymorphisms (SNPs) were used as instrumental variables to analyze subcortical brain volume, cortical thickness, and surface area as exposure factors, with MDD as the outcome. Multiple sensitivity analyses were conducted to validate the robustness of the results.

View Article and Find Full Text PDF

Objectives: Loneliness is associated with an elevated risk of dementia. There is mixed evidence from imaging studies on whether loneliness is associated with neuropathology in dementia-free adults. This study tests whether loneliness is associated with plasma neurobiomarkers of amyloid (Aβ42/Aβ40), phosphorylated tau 181 (pTau181), neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) and imaging measures of amyloid and tau.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!