Bone mineral density (BMD) is a major risk factor for osteoporosis. Circulating monocytes may serve as early progenitors of osteoclasts and produce a wide variety of factors important to bone metabolism. However, little is known about the roles of circulating monocytes in relation to the pathophysiology of osteoporosis. Using the Affymetrix HG-U133A GeneChip(R) array, we performed a comparative gene expression study of circulating monocytes in subjects with high and low BMD. We identified in total 66 differentially expressed genes including some novel as well as some already known to be relevant to bone metabolism. Three genes potentially contributing to bone metabolism, CCR3 (chemokine receptor 3), HDC (histidine decarboxylase, i.e. the histamine synthesis enzyme), and GCR (glucocorticoid receptor), were confirmed by quantitative real-time reverse transcriptase-PCR as up-regulated in subjects with lower BMD. In addition, significant negative correlation was observed between expression levels of the genes and BMD Z-scores. These three genes and/or their products mediate monocyte chemotaxis, histamine production, and/or sensitivity to glucocorticoids. Our results suggest a novel pathophysiological mechanism for osteoporosis that is characterized by increased recruitment of circulating monocyte into bone, enhanced monocyte differentiation into osteoclasts, as well as osteoclast stimulation via monocyte functional changes. This is the first in vivo microarray study of osteoporosis in humans. The results may contribute to identification of new genes and their functions for osteoporosis and suggest genetic markers to discern individuals at higher risk to osteoporosis with an aim for preventive intervention and treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M501164200DOI Listing

Publication Analysis

Top Keywords

circulating monocytes
16
bone metabolism
12
novel pathophysiological
8
pathophysiological mechanism
8
mechanism osteoporosis
8
gene expression
8
expression study
8
study circulating
8
three genes
8
osteoporosis
7

Similar Publications

Novel carbon dots with dual Modulatory effects on the bone marrow and spleen as a potential therapeutic candidate for treating spinal cord injury.

Bioact Mater

March 2025

Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedics, International Chinese Musculoskeletal Research Society Collaborating Center for Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300070, China.

Spinal cord injury triggers leukocyte mobilization from the peripheral circulation to the injury site, exacerbating spinal cord damage. Simultaneously, bone marrow hematopoietic stem cells (HSCs) and splenic leukocytes rapidly mobilize to replenish the depleted peripheral blood leukocyte pool. However, current treatments for spinal cord injuries overlook interventions targeting peripheral immune organs and tissues, highlighting the need to develop novel drugs capable of effectively regulating peripheral immunity and treating spinal cord injuries.

View Article and Find Full Text PDF

Particle elasticity has widely been established to substantially influence immune cell clearance and circulation time of vascular-targeted carriers (VTCs). However, prior studies have primarily investigated interactions with macrophages, monocytic cell lines, and in vivo murine models. Interactions between particles and human neutrophils remain largely unexplored, although they represent a critical aspect of VTC performance.

View Article and Find Full Text PDF

Introduction: Vaccine platforms such as viral vectors and mRNA can accelerate vaccine development in response to newly emerging pathogens, as demonstrated during the COVID-19 pandemic. However, the differential effects of platform and antigen insert on vaccine immunogenicity remain incompletely understood. Innate immune responses induced by viral vector vaccines are suggested to have an adjuvant effect for subsequent adaptive immunity.

View Article and Find Full Text PDF
Article Synopsis
  • Postinterventional restenosis poses challenges in treating peripheral vascular disease, as current drugs hinder endothelial repair while preventing neointima hyperplasia.
  • Stem cell-derived exosomes offer therapeutic benefits by delivering functional microRNAs but face limitations in targeting and tissue uptake in injured vessels.
  • To improve efficacy, researchers created platelet-mimetic exosomes (PM-EXOs) that enhance targeting to vascular injuries and promote endothelial repair with minimal side effects, demonstrating significant potential in reducing neointima formation.
View Article and Find Full Text PDF

The spleen in ischaemic heart disease.

Nat Rev Cardiol

January 2025

Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.

Article Synopsis
  • Ischaemic heart disease results from coronary atherosclerosis, which is linked to systemic inflammation involving various immune cells released by the spleen.
  • Prolonged inflammation can lead to ischaemic heart failure, while the spleen's interaction with the nervous system can modulate immune responses and protect the heart from damage.
  • Splenectomy, which removes the spleen, increases mortality risk from ischaemic heart disease, highlighting the spleen's crucial role in immune responses and cardiovascular protection.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!