In mammalian cells, arachidonate release and paf-acether formation are frequently associated. The alkyl-acyl-GPC has been proposed as an important source for released arachidonic acid and arachidonate-containing alkylacyl-GPC species as unique precursor for paf-acether. However, the specificity of precursor pools either concerning arachidonic acid or paf-acether is still a matter of controversy. We studied the relationship between the precursor pools for both autacoids in antigenically-stimulated cultured mast cells. We took advantage of the particular arachidonate turnover rate in each phospholipid to investigate the role of alkyl-arachidonyl-GPC in the supply of arachidonic acid by using newly and previously [14C]arachidonate-labeled cells. The specific activity of the released arachidonate was reduced 2-fold following overnight cell incubation, whereas labeling in alkyl-arachidonoyl-GPC was only slightly modified and never corresponded to that of released arachidonate when newly or previously labeled cells were triggered with the antigen. These results are not in favor of a major role for alkyl-arachidonoyl-GPC in supplying arachidonate. In contrast, by using previously labeled cells, we demonstrated that all arachidonate-containing phospholipids were involved in the release of arachidonic acid. The pattern of alkyl chains in alkyl-arachidonoyl-GPC, as well as in total alkylacyl-GPC, is unique since it consists mainly of 18:1 (more than 55%), whereas the 16:0 represents only about 30% of total alkyl chains. Therefore, we analyzed paf-acether molecular composition in order to compare it to the alkyl composition of the precursor pools. The content in 18:1 species of paf-acether, as measured by bioassay (aggregation of rabbit platelets), was always lower than that of 16:0 species and then did not correspond to the alkyl composition of the precursor. These data suggest that the enzymes involved in paf synthesis might be specific for 16:0 alkyl chains of precursor pool.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0005-2760(92)90060-9 | DOI Listing |
Aging is characterized by extensive metabolic dysregulation. Redox coenzyme nicotinamide adenine dinucleotide (NAD) can exist in oxidized (NAD) or reduced (NADH) states, which together form a key NADH/NAD redox pair. Total levels of NAD decline with age in a tissue-specific manner, thereby playing a significant role in the aging process.
View Article and Find Full Text PDFImmunology
February 2025
Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, California, USA.
Autoreactive, aberrantly activated lymphocytes that target myelin antigens in the central nervous system (CNS) are primary drivers of the autoimmune disease multiple sclerosis (MS). Proliferating cells including activated lymphocytes require deoxyribonucleoside triphosphates (dNTPs) for DNA replication. dNTPs can be synthesised via the de novo pathway from precursors such as glucose and amino acids or the deoxyribonucleoside salvage pathway from extracellular deoxyribonucleosides.
View Article and Find Full Text PDFBiotechnol Bioeng
December 2024
Department of Microbiology, University of Georgia, Athens, Georgia, USA.
Mevalonate is a biochemical precursor to a wide range of isoprenoids. The mevalonate pathway uses three moles of acetyl-CoA, and therefore native pathways which metabolize acetyl-CoA compete with mevalonate synthesis. Moreover, the final step in mevalonate formation, mediated by hydroxymethylglutaryl-CoA reductase, requires NADPH as a co-substrate.
View Article and Find Full Text PDFEnviron Sci Technol
December 2024
School of Energy and Environment, Southeast University, Nanjing 210096, China.
Disinfection byproducts (DBPs) in swimming pool water are a significant public health concern. The formation of aromatic halogenated DBPs in swimming pool water has not been clarified previously. In this study, the occurrence of aromatic halogenated DBPs in swimming pool water was examined, and it was found that halohydroxybenzoic acids (HBAs) and halobenzoquinones (HBQs) were the most dominant aromatic halogenated DBPs in swimming pool water that were continuously formed.
View Article and Find Full Text PDFBMC Plant Biol
November 2024
PMI R&D, Philip Morris Products S.A., Quai-Jeanrenaud 5, Neuchâtel, 2000, Switzerland.
Background: We have previously shown that the expression of a constitutively active nitrate reductase variant and the suppression of CLCNt2 gene function (belonging to the chloride channel (CLC) gene family) in field-grown tobacco reduces tobacco-specific nitrosamines (TSNA) accumulation in cured leaves and cigarette smoke. In both cases, TSNA reductions resulted from a strong diminution of free nitrate in the leaf, as nitrate is a precursor of the TSNA-producing nitrosating agents formed during tobacco curing and smoking. These nitrosating agents modify tobacco alkaloids to produce TSNAs, the most problematic of which are NNN (N-nitrosonornicotine) and NNK (4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!