Stability of dispersions of colloidal alumina particles in aqueous suspensions.

J Colloid Interface Sci

Regional Research Laboratory (Council of Scientific and Industrial Research), Orissa, Bhubaneswar 751013, India.

Published: November 2005

The colloidal stability of suspensions of alumina particles has been investigated by measuring particle size distribution, sedimentation, viscosity, and zeta potential. Alumina particles were found to be optimally dispersed at pH around 3 to 7.8 without dispersant and at pH 8.5 and beyond with dispersant. The above results corroborate zeta potential and viscosity measurement data well. The surface charge of alumina powder changed significantly with anionic polyelectrolyte (ammonium polycarboxylate, APC) and the iep shifted toward more acidic range under different dispersant conditions. It was found that the essential role played by pH and dispersant (APC) on the charge generation and shift in the isoelectric point of alumina manifests two features: (i) the stability decreases on approaching the isoelectric point from either side of pH, and (ii) the maximum instability was found at pH 9.1 for alumina only and at pH 6.8 for alumina/APC, which is close to the isoelectric points for both the system, respectively. Using the model based on the electrical double-layer theory of surfactant adsorption through shift in isoelectric points, the authors could estimate the specific free energy of interaction (7.501 kcal/mol) between particles and dispersant. The interaction energy, zeta potential, sedimentation, and viscosity results, were used to explain the colloidal stability of the suspension.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2005.04.091DOI Listing

Publication Analysis

Top Keywords

alumina particles
12
zeta potential
12
colloidal stability
8
sedimentation viscosity
8
shift isoelectric
8
isoelectric point
8
isoelectric points
8
alumina
6
dispersant
5
stability
4

Similar Publications

The aim of the study is to assess the impact of mechanical surface treatments on the shear bond strength (SBS) of orthodontic brackets bonded to three-dimensional (3D) printed and milled CAD/CAM provisional materials. Sixty cylindrical samples were fabricated for each provisional material. Samples were treated with one of the following surface treatments: aluminum oxide airborne particle abrasion, diamond bur rotary instrument roughening, and phosphoric acid etching (control).

View Article and Find Full Text PDF

Road properties of cement-phosphogypsum-red clay under dry and wet cycles.

PLoS One

December 2024

School of Civil Engineering, Guizhou University, Guiyang, Guizhou Province, China.

In this paper, the road performance and mechanism of cement-phosphogypsum-red clay (CPRC) under dry and wet cycling were systematically investigated using 5% cement as curing agent, the mass ratio of phosphogypsum: red clay = 1:1, and 5% SCA-2 as water stabilizer. The road performance of dry and wet cycle mix was verified with the National Highway G210 Duyun Yangan to Yingshan Highway Reconstruction and Expansion Project as a test road to provide a scientific basis for the application of cement-phosphogypsum-red clay on roads. The results show that the cement-phosphogypsum-red clay unconfined compressive strength decreases with the increase of the number of wet and dry cycles, with a larger decay in the first three times and leveling off thereafter.

View Article and Find Full Text PDF

Objective: Marginal adaptation of the provisional restoration often requires relining from relining materials. This study determined the effects of surface treatments on the shear bond strength (SBS) between 3D-printed provisional and bis-acryl relining materials.

Materials And Methods: The 3D-printed provisional specimens (9 × 9 × 2 mm) were prepared using methacrylate-based material.

View Article and Find Full Text PDF

Cocklebur-Inspired Robust Non-flammable Polymer Thermo Conductor for CPU Cooling.

Small

December 2024

School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China.

Efficient computer central processing units (CPUs) heat dissipation demands polymer-based thermal interface materials that combine high thermal conductivity with strong mechanical properties, eliminating the need for additional fasteners. However, polymers with high thermal conductivity often suffer from insufficient mechanical strength and other challenges, including high production costs, elevated interfacial thermal resistance, and flammability. Inspired by the 3D "spininess-seeds-bark" structure of cocklebur, cast polyurethane (PUC) composites are developed using copper ethylenediamine methylene-phosphonate as the "spininess" and functionalized alumina microspheres as the "seeds" filler.

View Article and Find Full Text PDF

ATP (adenosine triphosphate) and HMGB1 (high mobility group box 1 protein) are key players in treatments that induce immunogenic cell death (ICD). However, conventional therapies, including radiotherapy, are often insufficient to induce ICD. In this study, we explore a strategy using nanoparticle-loaded macrophages as a source of ATP and HMGB1 to complement radiation-induced intrinsic and adaptive immune responses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!