Proteolytic modification of insulin-like growth factor binding proteins (IGFBPs) plays an important physiological role in regulating insulin-like growth factor (IGF) bioavailability. Recently, we demonstrated that matrix metalloproteinase-7 (MMP-7)/Matrilysin produced by various cancer cells catalyzes the proteolysis of IGFBP-3 in vitro and regulates IGF bioavailability, resulting in an anti-apoptotic effect against anchorage-independent culture. In the present study, we investigated whether MMP-7 contributes to proteolysis of the other five IGFBPs, IGFBP-1, IGFBP-2, IGFBP-4, IGFBP-5, and IGFBP-6, and whether this results in phosphorylation of the IGF type 1 receptor (IGF-1R). MMP-7 cleaved all six IGFBPs, resulting in IGF-mediated IGF-1R phosphorylation, which was inhibited by EDTA treatment. These results suggest that MMP-7 derived from cancer cells can regulate IGF bioavailability in the microenvironment surrounding the tumor, where various kinds of IGF/IGFBP complexes are found, thereby favoring cancer cell growth and survival during the processes of invasion and metastasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2005.06.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!