Vascular lesions are an increasing challenge after renal transplantation due to the wider indications for recipients and acceptance criteria for donors. Diagnostic approach and prognostic interpretation are still matter of controversy. The case reported herein may summarize some of the issues in this regard. A 54-year-old woman, on renal replacement therapy since 1974, and a kidney graft recipient from 1975 to 1999, received a second graft in 2001. The donor age was 65 years (cold ischemia 22 hours; two mismatches). The early posttransplant follow-up was characterized by delayed graft function, hypertension, and diabetes. During the initial hypertension workup, renal graft ultrasound (US) Doppler demonstrated increased vascular resistances, stable over time (resistance index 0.74 to 0.77); renal scintiscan displayed homogeneously parenchymoa and angio-magnetic resonance imaging (MRI), an homogeneous parenchymal vascularization. Initial immunosuppression with tacrolimus and steroids was modulated by adding mycophenolate mofetil to taper tacrolimus (to reduce nephrotoxicity and hypertension). Despite this, kidney function slowly deteriorated; serum creatinine reached 3 to 3.5 mg/dL by the second year. After a severe hypertensive crisis with unchanged scintiscan and US doppler examinations, angio-MRI revealed the almost complete disappearance of parenchymal enhancement beyond the lobar arteries. A renal biopsy confirmed the severe vascular damage. The patient was switched to rapamycine and a low-dose of an angiotension converting enzyme (ACE) inhibitor. She did relatively well (serum creatinine 2.2 to 3 mg/dL) for 6 months, when rapid functional impairment forced her to restart hemodialysis. This case, almost paradigmatic of the problems occurring when the rigid vasculature of long-term dialysis patients is matched with "marginal kidneys," suggests that MRI may be a sensible good to define vascular damage in the grafted kidney.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.transproceed.2005.03.032DOI Listing

Publication Analysis

Top Keywords

vascular damage
12
serum creatinine
8
renal
5
diffuse vascular
4
damage transplanted
4
kidney
4
transplanted kidney
4
kidney indication
4
indication nuclear
4
nuclear magnetic
4

Similar Publications

Modeling Innate Immunity Causing Chronic Inflammation and Tissue Damage.

Bull Math Biol

January 2025

Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.

Mathematical models of immune responses have traditionally focused on adaptive immunity and pathogen-immune dynamics. However, recent advances in immunology have highlighted the critical role of innate immunity. In response to physical damage or pathogen attacks, innate immune cells circulating throughout the body rapidly migrate from blood vessels and accumulate at the site of injury, triggering inflammation.

View Article and Find Full Text PDF

Background: Apolipoprotein C3 (apo C3) is primarily secreted by the liver and is involved in promoting sterile inflammation and organ damage under pathological conditions. Previous studies have shown that apo C3 is abundant in the plasma exosomes of patients with aortic dissection (AD), but its specific role in AD remains unclear.

Methods And Results: In vivo, adeno-associated virus was used to knock down hepatic apo C3 expression in an AD mouse model to assess the impact of liver-derived apo C3 on the development of AD.

View Article and Find Full Text PDF

Background: Iron is an essential micronutrient for cell survival and growth; however, excess of this metal drives ferroptosis. Although maternal iron imbalance and placental hypoxia are independent contributors to the pathogenesis of preeclampsia, a hypertensive disorder of pregnancy, the mechanisms by which their interaction impinge on maternal and placental health remain elusive.

Methods: We used placentae from normotensive and preeclampsia pregnancy cohorts, human H9 embryonic stem cells differentiated into cytotrophoblast-like cells, and placenta-specific preeclamptic mice.

View Article and Find Full Text PDF

Background: The application of nanomedicine in inflammatory bowel disease (IBD) has gained significant attention in the recent years. As the field rapidly evolves, analyzing research trends and identifying research hotpots are essential for guiding future advancements, and a comprehensive bibliometric can provide valuable insights.

Methods: The current research focused on publications from 2001 to 2024, and was sourced from the Web of Science Core Collection (WoSCC).

View Article and Find Full Text PDF

Introduction: Artificial vascular scaffolds can mimic the structure of natural blood vessels and replace the damaged vessels by implanting them at the injury site to perform the corresponding functions. Electrospinning technology can perfectly combine biological signals and topographical cues to synergistically induce directed cell migration and growth.

Methods: In this study, poly (caprolactone) (PCL) nanofibers, PCL nanofibers uniformly coated with the extracellular matrix derived from endothelial cells (ECd), and bi-directional linear gradient ECd-coated PCL nanofibers were prepared by electrospinning and electrospray techniques to evaluate their effects on the proliferation and migration of Human umbilical vein endothelial cells (HUVECs) and rapid endothelialization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!