Thermal-assisted partial acid hydrolysis of the carbohydrate moieties of N-glycosylated peptides of horseradish peroxidase (HRP) is used to generate oligosaccharide cleavage ladders. These ladders allow direct reading of components of the oligosaccharides by mass spectrometry. Acid hydrolysis performed with 1.4, 3.1, 4.5, or 6.7M trifluoroacetic acid at 37, 65, or 95 degrees C for 30min to 24h hydrolyzed mainly the oligosaccharide units of glycopeptides with least peptide bond or amino acid side chain hydrolysis. Tryptic N-glycosylated peptides from HRP with molecular weights of 2533, 2612, 3355, 3673, and 5647Da were used as test systems in these experiments. Data showed that the most labile group of oligosaccharides is the fucose (Fuc) and the majority of the end cleavage products are peptides with one or no N-acetylglucosamine (GlcNAc) residue linked to Asparagine (Asn). Additionally, the data agree with previous reports that glycopeptides 3355 and 3673Da carry an oligosaccharide (Xyl)Man3(Fuc)GlcNAc2, glycopeptide 5647Da carries two oligosaccharides (Xyl)Man3(Fuc)GlcNAc2, and glycopeptides 2612 and 2533Da carry (Xyl)Man3GlcNAc2 and (Fuc)GlcNAc, respectively. However, the glycosylation site of the 2612Da peptide at Asn286 is partially occupied. This method is particularly useful in identifying glycopeptides and obtaining monosaccharide compositions of glycopeptides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.carres.2005.04.018 | DOI Listing |
Lett Appl Microbiol
January 2025
Shenzhen Academy of Metrology & Quality Inspection, Shenzhen, China.
Bongkrekic acid (BA) toxin, produced by Burkholderia gladioli pathovar cocovenenans bacteria, has been implicated in foodborne illness outbreaks. BA poisoning is associated with rice noodle consumption; hence, this study investigated B. cocovenenans growth and BA production in wet rice noodles comprising varying starch ratios, starch types, rice nutrients, and saccharides.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Department of Entomology, National Chung Hsing University, Taichung City, Taiwan.
Background: The lesser grain borer, Rhyzopertha dominica, is a serious stored-products pest mainly controlled by insecticides. Spinosad, an environmentally friendly biological insecticide with low mammalian toxicity, is considered a suitable candidate for R. dominica management.
View Article and Find Full Text PDFFoods
January 2025
SKL of Marine Food Processing & Safety Control, National Engineering Research Center of Seafood, Collaborative Innovation Center of Seafood Deep Processing, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China.
Freshwater fish processing produces 30-70% nutrient-rich by-products, often discarded or undervalued. Grass carp by-products, rich in protein, offer potential as raw materials for fermented seasonings. This study explores the use of these by-products-specifically, minced fish and fish skin-in soybean fermentation to evaluate their effects on the quality of the resulting seasonings.
View Article and Find Full Text PDFTannase, as a type of tannin-degrading enzyme, can catalyze the hydrolysis of ester and depside bonds in gallotannins, thereby releasing gallic acid and glucose. Based on this reaction mechanism, Tannase can effectively improve the problems of bitter taste, weak aroma, and tea cheese in tea infusion, and is therefore widely used in the tea industry. However, due to high production costs, difficulties in purification and recovery, and insufficient understanding of Tannase properties, the large-scale application of Tannase is severely limited.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Department of Physical Aspects of Ecoenergy, Institute of Fluid-Flow Machinery, Polish Academy of Sciences, Generała Józefa Fiszera 14 Street, 80-231 Gdańsk, Poland.
The leather industry generates significant amounts of waste, including chromium-tanned leather waste (CTLW), which poses environmental and health hazards due to chromium's potential toxicity. Efficient management of CTLW is crucial for environmental sustainability and resource recovery. Various methods exist for chromium recovery, including physical, chemical, and biological processes, with chemical methods, particularly substitution extraction using organic acids, showing promising results.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!