Integrins are adhesion receptors that transmit signals bidirectionally across the plasma membrane. In our previous report we have shown that the squamous lung cancer cell line, Calu-1, binds to collagen type IV (Coll IV) through beta1-integrin and results in phosphorylation of focal adhesion kinase (FAK) (Ann Thorac Surg 2004; 78:450-457). Considering the critical role of FAK in cell migration, proliferation, and survival, here we investigated potential mechanisms of its activation and regulation in Calu-1 cells. We observed the phosphorylation of Tyr397 of FAK (the autophosphorylation site of FAK) and paxillin, the immediate downstream substrate of FAK following the adhesion of Calu-1 cells to Coll IV. FAK remains phosphorylated during proliferation either on Coll IV or on uncoated plates for 72 h, as determined by peroxivanadate treatment. Exposure of Calu-1 cells with 60 microM genistein, reduces FAK phosphorylation (7.6 fold) and cell proliferation. Extracellular signal regulated kinases (ERKs) were also phosphorylated after Coll IV attachment. Disruption of Calu-1 cell cytoskeleton integrity by 1-5 muM Cytochalasin D resulted in the inhibition of cell adhesion (50% to 75%, p<0.19 - 6.6 x 10(7)) and ERKs phosphorylation (2 fold) without any effect on FAK phosphorylation. Protein Kinase C inhibitor, Calphostin C at 100 and 250 nM concentrations did not block Coll IV induced FAK phosphorylation but activated the ERKs in a dose dependent manner. beta1-integrin is essential for Coll IV induced FAK activation, but it is not physically associated with FAK as determined by immunodetection assay. Collectively, this report defines the existence of multiple and potentially parallel Coll IV/beta1-integrin mediated signaling events in Calu-1 cells, which involve FAK, ERKs, and PKC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6741146 | PMC |
http://dx.doi.org/10.1111/j.1582-4934.2005.tb00364.x | DOI Listing |
Lipids Health Dis
December 2024
Department of Respiratory and Critical Care Medicine, Zhuzhou Central Hospital, No.116, Changjiang South Road, Tianyuan District, Zhuzhou, 412000, Hunan, China.
Background: Inhibiting cholesterol metabolism has shown great potential in non-small cell lung cancer (NSCLC). However, the regulatory mechanism of the lipid metabolism key factor Sect. 14-like lipid binding 2 (SEC14L2) in NSCLC remains unclear.
View Article and Find Full Text PDFOnco Targets Ther
November 2024
Laboratory of Molecular Oncology, National Cancer Institute, Vilnius, LT-08406, Lithuania.
Purpose: Poor lung cancer patients' outcomes and survival rates demand the discovery of new biomarkers for the specific, significant, and less invasive detection of non-small cell lung cancer (NSCLC) progression. The present study aimed to investigate the potential of miRNA expression as biomarkers in NSCLC utilizing a preclinical cell culture setup based on screening of miRNAs in NSCLC cells grown in 3D cell culture.
Patients And Methods: The study was performed using lung cancer cell lines, varying in different levels of aggressiveness: NCI-H1299, A549, Calu-1, and NCI-H23, as well as noncancerous bronchial epithelial cell line HBEC3, which were grown in 3D cell culture.
Cytotechnology
October 2024
Department of Medical Oncology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, 264000 Shandong Province China.
The aim of this study is to explore the effects and specific mechanisms of heparanase on angiogenesis and iron deficiency anemia in TP53 mutant cancer. For this purpose, we conducted in vitro cell experiments and in vivo animal experiments respectively. In this study, we first analyzed the differential expression of heparanase in TP53 wild-type and mutant cells, and analyzed its effects on iron removal and angiogenesis in two types of CALU-1 and NCI-H358 cells.
View Article and Find Full Text PDFFitoterapia
September 2024
State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Research Center for Natural Medicine Engineering and Technology, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China. Electronic address:
Novel coumarin-piperazine-2(5H)-furanone hybrids 5a-l were efficiently synthesized by introducing a furanone scaffold into coumarin using piperazine as a linker. The cytotoxicity of all hybrids 5a-l were evaluated by MTT assay on human lung cancer A549 cells and normal human lung fibroblast WI-38 cells with cytarabine (CAR) as a positive control. Hybrid 5l (IC = 11.
View Article and Find Full Text PDFRSC Med Chem
March 2024
State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia Research Center for Natural Medicine Engineering and Technology, College of Chemistry and Chemical Engineering, Ningxia University 489 Helanshan West Road Yinchuan 750021 China
Novel rhein-piperazine-furanone hybrids, 5, were designed and synthesized efficiently from rhein. Cytotoxicity of all hybrids 5a-j against A549 human lung cancer cells was superior to the parent rhein and the reference cytarabine (CAR). Hybrid 5e (IC = 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!