The structural and physicochemical properties of the manganese-corrolazine (Cz) complexes (TBP8Cz)Mn(V)O (1) and (TBP8Cz)Mn(III) (2) (TBP = p-tert-butylphenyl) have been determined. Recrystallization of 2 from toluene/MeOH resulted in the crystal structure of (TBP8Cz)Mn(III)(CH3OH) (2 x MeOH). The packing diagram of 2 x MeOH reveals hydrogen bonds between MeOH axial ligands and meso N atoms of adjacent molecules. Solution binding studies of 2 with different axial ligands (Cl-, Et3PO, and Ph3PO) reveal strong binding, corroborating the preference of the Mn(III) ion for a five-coordinate environment. High-frequency and field electron paramagnetic resonance (HFEPR) spectroscopy of solid 2 x MeOH shows that 2 x MeOH is best described as a high-spin (S = 2) Mn(III) complex with zero-field splitting parameters typical of corroles. Structural information on 1 was obtained through an X-ray absorption near-edge structure (XANES)/extended X-ray absorption fine structure (EXAFS) study and compared to XANES/EXAFS data for 2 x MeOH. The XANES data for 1 shows an intense pre-edge transition characteristic of a high-valent metal-oxo species, and a best fit of the EXAFS data gives a short Mn-O bond distance of 1.56 A, confirming the structure of the metal-oxo unit in 1. Detailed spectroelectrochemical studies of 1 and 2 were performed revealing multiple reversible redox processes for both complexes, including a relatively low potential for the Mn(V) --> Mn(IV) process in 1 (near 0.0 V vs saturated calomel reference electrode). Chemical reduction of 1 results in the formation of a Mn(III)Mn(IV)(mu-O) dimer as characterized by electron paramagnetic resonance spectroscopy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic0503636DOI Listing

Publication Analysis

Top Keywords

physicochemical properties
8
axial ligands
8
electron paramagnetic
8
paramagnetic resonance
8
x-ray absorption
8
meoh
6
synthesis characterization
4
characterization physicochemical
4
properties manganeseiii
4
manganeseiii manganesev-oxo
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!