Background: Dietary tocopherols, tocotrienols and saturated, mono and polyunsaturated fatty acids have been reported to have an effect on blood lipid profiles. In Colombia, vegetable oils (palm, soy, corn, sunflower, and canola) are a common dietary constituent and consumed in high quantities.
Objective: In the current study, the effects of vegetable oil consumption was examined by measuring blood concentrations of triglycerides (TG), total cholesterol (TC) and HDL cholesterol (HDL-C) in male Wistar rats.
Methods: The concentrations of tocopherols, tocotrienols, and fatty acids in each oil was quantified by High Performance Liquid Chromatography (HPLC). Each rat diet was supplemented with 0.2 ml/day with one oil type. Over a 4-week period, groups of animals were sacrificed weekly and blood samples were obtained to quantify TC, TG and HDL-C for each oil class. Statistical analyses included mean, standard deviation, ANOVA and Bonferroni comparisons tests.
Results: Triglyceride content was not affected except in the control and the soy group in the third treatment week, although a tendency for decreased TG was noted in the palm oil group and for increased TG in the sunflower oil and canola oil groups. No significant differences in total cholesterol were observed. In HDL-C, significant differences were present for every treatment week (p = 0.005); this represented a decreasing trend in palm oil group and an increasing trend in the sunflower and corn oil groups.
Conclusion: The oils effected changes in the blood lipid profile. A small amount of saturated fatty acids (tocopherol and tocotrienol) were favourable for the HDL-C increase. The presenct of tocorienols tended to decrease the TG and probably helped attenuate the unfavorable effects of the saturated fatty acids.
Download full-text PDF |
Source |
---|
Int J Biol Macromol
January 2025
College of Technology and Engineering, MPUAT, Udaipur, Rajasthan-313001, India. Electronic address:
Lipases, enzymes that perform the hydrolysis of triglycerides into fatty acids and glycerol, present a potential paradigm shift in the realms of food and detergent industries. Their enhanced efficiency, energy conservation and environmentally friendly attributes make them promising substitutes for chemical catalysts. Motivated by this prospect, this present study was targeted on the heterologous expression of a lipase gene, employing E.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Agricultural and Environmental Biotechnology, São Paulo State University (UNESP), School of Agricultural and Veterinarian Sciences, Jaboticabal, São Paulo, Brazil; Institute of Bioenergy Research (IPBEN), Jaboticabal, São Paulo, Brazil. Electronic address:
This study characterized a novel bacterial lipase with high biotechnological potential, focusing on industrial and environmental applications. Bacterial isolates were screened using olive oil as a substrate, and the strain with the highest hydrolytic halo was identified as Burkholderia sp. via 16S rRNA analysis.
View Article and Find Full Text PDFJ Nutr Health Aging
January 2025
Gazi University, School of Medicine, Department of Internal Medicine, Division of Geriatrics, Ankara, Turkey.
Appl Environ Microbiol
January 2025
Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
Polyunsaturated fatty acids (PUFAs) play a crucial role in aiding bacteria to adapt to extreme and stressful environments. While there is a well-established understanding of their production, accrual, and transfer within marine ecosystems, knowledge about terrestrial environments remains limited. Investigation of the intestinal microbiome of earthworms has illuminated the presence of PUFAs presumably of microbial origin, which contrasts with the surrounding soil.
View Article and Find Full Text PDFAnal Chem
January 2025
Center for Translational Biomedical Research, University of North Carolina at Greensboro, Kannapolis, North Carolina 28081, United States.
Double bond (C═C) position isomerism in unsaturated lipids can indicate abnormal lipid metabolism and pathological conditions. Novel chemical derivatization and mass spectrometry-based techniques are under continuing development to provide more accurate elucidation of lipid structure in finer structural detail. Here, we introduce a new ion chemistry for annotating lipid C═C positions, which is highly efficient for liquid chromatography-mass spectrometry-based lipidomics.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!