Individuals with sickle-cell disease (SCD) and transgenic sickle mice expressing human betaS globin exhibit enhanced reactive oxygen species (ROS) production, vascular inflammation, and episodic vasoocclusion. We hypothesize that reduction of ROS will reduce endothelial-cell activation and adhesion-molecule expression, thereby inhibiting vasoocclusion. To test this hypothesis, we measured endothelial-cell activation, adhesion-molecule expression, and vasoocclusion in sickle mice after administering i.v. polynitroxyl albumin (PNA), a superoxide dismutase and catalase mimetic. Untreated sickle mice, compared with normal mice, showed increased activation of nuclear factor-kappaB (NF-kappaB), an oxidant-sensitive transcription factor, in their lungs, livers, and skin. NF-kappaB activation was increased further in the livers and skin of sickle but not normal mice after hypoxia-reoxygenation. IV administration of PNA inhibited NF-kappaB activation by 60% (P < .01) in the lungs and by 33% (P < .05) in the livers of sickle mice after hypoxia-reoxygenation. PNA also reduced the expression of vascular cell-adhesion molecule-1 (VCAM-1) by 57% in lung (P < .05) and by 33% in liver (P < .05) and reduced the expression of intercellular-adhesion molecule-1 (ICAM-1) by 40% in lung (P < .05) and by 53% in liver (P < .05). PNA inhibited a hypoxia-reoxygenation-induced increase in leukocyte rolling (P < .01) and adhesion (P < .05) in venules of the dorsal skin. Most importantly, PNA completely inhibited hypoxia-reoxygenation-induced vasoocclusion (P < .001). Control albumin had no effect on NF-kappaB, VCAM-1, ICAM-1, rolling, adhesion, or vasoocclusion. We speculate that therapies to reduce oxidative stress will inhibit inflammation and vasoocclusion in SCD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lab.2005.02.008DOI Listing

Publication Analysis

Top Keywords

sickle mice
20
polynitroxyl albumin
8
inflammation vasoocclusion
8
transgenic sickle
8
endothelial-cell activation
8
activation adhesion-molecule
8
adhesion-molecule expression
8
normal mice
8
livers skin
8
nf-kappab activation
8

Similar Publications

Red blood cell pyruvate kinase properties in Townes and Berkeley sickle cell disease mouse models - Of mice and men.

Blood Cells Mol Dis

January 2025

Red Blood Cell Research Group, Central Diagnostic Laboratory-Research, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.

Pyruvate kinase (PK), a key ATP-generating enzyme in glycolysis, is a target for novel sickle cell disease (SCD) therapies. Enhancing PK activity lowers 2,3-diphosphyglycerate (2,3-DPG), increases adenosine triphosphate (ATP), and may prevent red blood cell (RBC) sickling. Townes and Berkeley SCD mouse models are commonly used for the development of novel drugs for SCD, but differ from humans in 2,3-DPG and ATP levels, which could be related to underlying differences in PK properties.

View Article and Find Full Text PDF

Circulating mature red blood cells (RBCs) from patients and mice with sickle cell disease (SCD) abnormally retain mitochondria, a factor shown to contribute to the disease's pathobiology. To further understand the functional implications of RBC mitochondria retention in SCD, we used mitochondria inhibitors and metabolites/substrates from the tricarboxylic acid cycle, oxidative phosphorylation and glycolysis pathways (ADP, glutamate, malate, pyruvate, succinate or all metabolites combined) and examined RBC bioenergetics, reactive oxygen species (ROS) levels, calcium flux and hydration. In RBCs from sickle mice, mitochondria inhibition reduced ATP levels by 30%-60%, whereas control RBCs were unaffected.

View Article and Find Full Text PDF

Long-term consumption of erythritol, a widely used sugar substitute, has been associated with increased risks of thrombosis and cardiometabolic diseases. In this study, we investigated the effects and mechanisms of allulose in mitigating these risks compared to erythritol using the clusterProfiler tool in R (version 4.12.

View Article and Find Full Text PDF

The transsulfuration (TSS) pathway is an alternative source of cysteine for glutathione synthesis. Little of the TSS pathway in antioxidant capacity in sickle cell disease (SCD) is known. Here, we evaluate the effects of TSS pathway activation through cystathionine beta-synthase (CBS) to attenuate reactive oxygen species (ROS) and ferroptosis stresses in SCD.

View Article and Find Full Text PDF

We describe a patient with sickle cell disease (SCD) and elevated antiphospholipid antibodies (aPL) who developed multi-organ failure resembling catastrophic antiphospholipid syndrome. Autoimmune screening revealed several autoantibodies characteristic of systemic lupus erythematosus (SLE). Notably, routinely housed and unmanipulated transgenic sickle mice displayed significantly elevated titres of aPL- and SLE-associated autoantibodies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!