Vascular endothelial growth factor (VEGF) is a potent growth factor that is indispensable for the development of blood vessels in the fetus and for wound healing in adults. VEGF likely plays a role in maintaining the blood vessels once they have been formed. It is not clear, however, whether a low tissue VEGF (caused either by disease or by systemic administration of VEGF antagonists) can cause abnormalities in preexisting blood vessels, especially of wound tissue that requires high local levels of VEGF for healing. The present study investigated the effect of VEGF antagonism on blood vessels of foreign-body granulomas (a model of wound-healing tissue). Granulomas were induced by implanting perforated polyvinyl tubes into the subcutaneous tissue of rats and allowed to develop for 14 days, at which time the implanted tubes were completely encapsulated by the subcutaneous tissue. The encapsulated granulomas consisted of 3 distinct histological layers, of which the middle layer was well perfused by a rich supply of microvessels. Morphologically, the granuloma remained "stable" after developing for 14 days. At 1 week, VEGF levels in the granuloma fluid, which is in equilibrium with the interstitial fluid, were 25 times higher than in the plasma. VEGF levels in the granuloma fluid continued to increase for up to 3 weeks, reflecting the high dependence of the wound tissue on ambient VEGF levels. After injection of the VEGF receptor antagonist in the fully formed granuloma, the preexisting blood vessels in the middle layer regressed and underwent apoptosis, accompanied by expansion of the extracellular matrix (predominately collagen I) into areas normally devoid of matrix. We conclude that wound tissue is sensitive to ambient VEGF levels, and that a low VEGF condition resulting from VEGF receptor antagonism can disrupt the healing of wound tissue.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lab.2005.02.007DOI Listing

Publication Analysis

Top Keywords

wound tissue
20
blood vessels
20
vegf levels
16
vegf
13
growth factor
12
tissue
9
vascular endothelial
8
endothelial growth
8
preexisting blood
8
subcutaneous tissue
8

Similar Publications

With the continuous development of Terahertz technology and its high sensitivity to water, Terahertz technology has been widely applied in various research areas within the field of biomedicine, such as research onskin wounds and burns, demonstrating numerous advantages and potential. The aim of this study is to summarize and conclude the current research status of Terahertz radiation in skin wounds, burns, and melanoma. Additionally, it seeks toreveal the development status of Terahertz in skin wound models and analyze the short comings of Terahertz in detecting such models at the present stage.

View Article and Find Full Text PDF

Peptide Nanofibers and Skin Regeneration.

Adv Exp Med Biol

January 2025

Requalite GmbH, Gräfelfing, Germany.

Peptide nanofibers have been attractive targets for regenerative medicine applications due to their tailorability to be easily functionalized for specific bioactivity, biocompatibility, ease of synthesis, adjustability of their physicochemical characteristics, and lack of biological contamination. Research groups have investigated their use for the regeneration of various tissues, such as bone, cartilage, brain, peripheral nerves, cardiac tissue, vascular tissues, endocrine cells, muscles, etc., for the treatment of degenerative diseases or tissue loss due to accidents or aging.

View Article and Find Full Text PDF

Traumatic brain injury (TBI) often leads to impaired regulation of cerebral blood flow, which may be caused by pathological changes of the vascular smooth muscle cells (VSMCs) in the arterial wall. Moreover, these cerebrovascular changes may contribute to the development of various neurodegenerative disorders such as Alzheimer's-like pathologies that include amyloid beta aggregation. Despite its importance, the pathophysiological mechanisms responsible for VSMC dysfunction after TBI have rarely been evaluated.

View Article and Find Full Text PDF

Objectives: To study the clinical effect of the L-shape technique combined with concentrated growth factor on the horizontal bone defects of maxillary anterior teeth.

Methods: Twenty-five implants from 25 patients who underwent single maxillary anterior tooth implantation with simultaneous bone grafting were selected as the study subjects. Based on the bone grafting techniques, the patients were divided into a test group (L-shaped technique with guided bone regeneration combined with concentrated growth factor, 11 cases) and a control group (traditional guided bone regeneration combined with concentrated growth factor, 14 cases).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!