Plane-parallel ionization chambers that exhibit polar effects with low energy electron beams are recommended for therapeutic electron dosimetry. In this study, the polarity effects of a C-134A ionization chamber, a major commercially available plane-parallel ionization chamber in Japan, were characterized as a function of mean energy at various depths. Polarity effects were measured at representative depths along depth dose curves of nominal 4, 6, 9, 12 and 15 MeV electron beams, and were compared with previously reported results. Polarity errors for the ionization chamber studied were shown to monotonically increase with decreasing mean energy at a given depth and were maximal at about 1-2 MeV. It was also shown that polarity errors depended on the energy of the incident electron beam. The polarity error of the C-134A ionization chamber was larger than that of other previously investigated plane-parallel ionization chambers. Because the magnitude of polarity effects should be determined throughout the depth dose curve in therapeutic electron dosimetry, it is always necessary to measure ionization readings taken at both polarities.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ionization chamber
20
plane-parallel ionization
16
therapeutic electron
12
c-134a ionization
12
polarity effects
12
ionization
9
ionization chambers
8
electron beams
8
electron dosimetry
8
depth dose
8

Similar Publications

Purpose: This study aims to compare treatment plans created using RapidPlan and PlanIQ for twelve patients with prostate cancer, focusing on dose uniformity, dose reduction to organs at risk (OARs), plan complexity, and dose verification accuracy. The goal is to identify the tool that demonstrates superior performance in achieving uniform target dose distribution and reducing OAR dose, while ensuring accurate dose verification.

Methods: Dose uniformity in the planning target volume, excluding the rectum, and dose reduction in the OARs (the rectum and bladder) were assessed.

View Article and Find Full Text PDF

Establishing In-vivo brain microdialysis for comparing concentrations of a variety of cortical neurotransmitters in the awake rhesus macaque between different cognitive states.

J Neurosci Methods

January 2025

Cognitive Neuroscience Laboratory, German Primate Center - Leibniz Institute for Primate Research, Goettingen, Germany; Faculty of Biology and Psychology, University of Goettingen, 37077 Goettingen, Germany.

Background: Neuronal activity is modulated by behavior and cognitive processes. The combination of several neurotransmitter systems, acting directly or indirectly on specific populations of neurons, underlie such modulations. Most studies with non-human primates (NHPs) fail to capture this complexity, partly due to the lack of adequate methods for reliably and simultaneously measuring a broad spectrum of neurotransmitters while the animal engages in behavioral tasks.

View Article and Find Full Text PDF

Assessment of the Performance of the Dose Calibrator Used in Radioactivity Measurement.

Indian J Nucl Med

November 2024

Center for Research and Production of Radioisotopes, Dalat Nuclear Research Institute, Vietnam Atomic Energy Institute (VINATOM), Da Lat City, Lam Dong Province, Vietnam.

Aims: This study aimed to evaluate the principal technical characteristics of a well-type gas-filled ionization chamber dose calibrator used in measuring radiopharmaceutical activity, namely accuracy, repeatability, and linearity. Furthermore, this work also explored the correlation between the device's response and the position and volume of the radiopharmaceutical I-131.

Materials And Methods: Experimental measurements were conducted on the ATOMLAB 500 dose calibrator using NIST traceable Cs-137 source to determine the accuracy and repeatability.

View Article and Find Full Text PDF

Challenges in extracting and characterizing electrolytes from automotive lithium-ion cells.

Anal Chim Acta

January 2025

University Regensburg, Institute of Analytical Chemistry, Universitätsstrasse 31, 93053, Regensburg, Germany. Electronic address:

Background: The demand for lithium-ion cells in the automotive industry is rapidly growing due to the increasing electrification of the transportation sector. The electrolyte composition plays a critical role in determining the lifetime and performance of these large-format cells. Additionally, advancements in this field are leading to frequent changes in both electrode materials and electrolyte formulations.

View Article and Find Full Text PDF

Purpose: The self-shielding radiosurgery system ZAP-X consists of a 3 MV linear accelerator and eight round collimators. For this system, it is a common practice to perform the reference dosimetry using the largest 25 mm diameter collimator at a source-to-axis distance (SAD) of 45 cm with the PTW Semiflex3D chamber placed at a measurement depth of 7 mm in water. Existing dosimetry protocols do not provide correction for these measurement conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!