Mitochondrial impairment is hypothesized to contribute to the pathogenesis of insulin resistance. Mitofusin (Mfn) proteins regulate the biogenesis and maintenance of the mitochondrial network, and when inactivated, cause a failure in the mitochondrial architecture and decreases in oxidative capacity and glucose oxidation. Exercise increases muscle mitochondrial content, size, oxidative capacity and aerobic glucose oxidation. To address if Mfn proteins are implicated in these exercise-induced responses, we measured Mfn1 and Mfn2 mRNA levels, pre-, post-, 2 and 24 h post-exercise. Additionally, we measured the expression levels of transcriptional regulators that control mitochondrial biogenesis and functions, including PGC-1alpha, NRF-1, NRF-2 and the recently implicated ERRalpha. We show that Mfn1, Mfn2, NRF-2 and COX IV mRNA were increased 24 h post-exercise, while PGC-1alpha and ERRalpha mRNA increased 2 h post-exercise. Finally, using in vitro cellular assays, we demonstrate that Mfn2 gene expression is driven by a PGC-1alpha programme dependent on ERRalpha. The PGC-1alpha/ERRalpha-mediated induction of Mfn2 suggests a role of these two factors in mitochondrial fusion. Our results provide evidence that PGC-1alpha not only mediates the increased expression of oxidative phosphorylation genes but also mediates alterations in mitochondrial architecture in response to aerobic exercise in humans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1474174PMC
http://dx.doi.org/10.1113/jphysiol.2005.092031DOI Listing

Publication Analysis

Top Keywords

mfn proteins
8
mitochondrial architecture
8
oxidative capacity
8
glucose oxidation
8
mfn1 mfn2
8
mrna increased
8
increased post-exercise
8
mitochondrial
7
mitofusins 1/2
4
erralpha
4

Similar Publications

Maternal swimming with overload allied to postnatal high-fat, high-sugar diet induce subtle impairment on rat offspring's ovarian redox homeostasis.

Reprod Fertil Dev

December 2024

Programa de Pós-graduação em Ciências Biológicas: Bioquímica, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil; and Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Context The Developmental Origins of Health and Disease (DOHaD) concept suggests that early-life interventions significantly influence the long-term health outcomes of offspring. Emerging evidence supports that maternal physical exercise and balanced nutrition can positively impact the health of the next generation. Aims This study investigated the effects of maternal swimming combined with postnatal high-fat, high-sugar (HFHS) diet on the ovarian health of adult female Wistar rat offspring.

View Article and Find Full Text PDF

MFN1 (mitofusin 1) and MFN2 are key players in mitochondrial fusion, endoplasmic reticulum (ER)-mitochondria juxtaposition, and macroautophagy/autophagy. However, the mechanisms by which these proteins participate in these processes are poorly understood. Here, we studied the interactomes of these two proteins by using CRISPR-Cas9 technology to insert an HA-tag at the C terminus of MFN1 and MFN2, and thus generating HeLa cell lines that endogenously expressed MFN1-HA or MFN2-HA.

View Article and Find Full Text PDF

Toxicity associated with elevated levels of cobalt-chromium-molybdenum (CoCrMo) nanoparticles in total hip replacement (THR) patients has been a rising concern. Recent investigations demonstrated that these particles can induce polyneuropathy in THR patients. The current study aims to address a detailed molecular investigation of CoCrMo nanoparticle-mediated mitochondrial dynamics using induced pluripotent stem cell-derived neurons (iPSC neurons).

View Article and Find Full Text PDF

Background: Data regarding multiple switches including reverse switching between infliximab and its biosimilars are scarce in the field of inflammatory bowel diseases (IBD).

Objectives: We investigated the clinical effectiveness as primary outcome measure after repeated switches. Secondary endpoints included C-reactive protein (CRP) levels, immunogenicity (trough levels (TL); anti-drug antibodies (ADA), safety and drug persistence.

View Article and Find Full Text PDF

The progressive decline of dopaminergic neurons in Parkinson's disease (PD) has been linked to an imbalance in energy and the failure of mitochondrial function. AMP-activated protein kinase (AMPK), the major intracellular energy sensor, regulates energy balance, and damage to nigral dopaminergic neurons induced by 6-hydroxydopamine (6-OHDA) is exacerbated in the absence of AMPK activity. This study aimed to examine the potential therapeutic advantages of AdipoRon, an AMPK activator, on motor function and mitochondrial homeostasis in a 6-OHDA-induced PD model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!