Mutations in the non-lysosomal cysteine protease calpain 3 cause limb-girdle muscular dystrophy type 2A (LGMD2A). Our previous studies of the calpain 3 knockout mouse (C3KO) suggested a role for calpain 3 in sarcomere formation and remodeling. Calpain 3 may mediate remodeling by cleavage and release of myofibrillar proteins, targeting them for ubiquitination and proteasomal degradation. Loss of proper protein turnover may be the basis for this muscle disease. To test this hypothesis in vivo, we used an experimental model of hindlimb unloading and reloading that has been shown to induce sarcomere remodeling. We showed that the rate of atrophy and especially the rate of growth are decreased in C3KO muscles under conditions promoting sarcomere remodeling. In wild-type mice, an elevated level of ubiquitinated proteins was observed during muscle reloading, which is presumably necessary to remove atrophy-specific and damaged proteins. This increase in ubiquitination correlated with an increase in calpain 3 expression. C3KO muscles did not show any increase in ubiquitination at the reloading stage, suggesting that calpain 3 is necessary for ubiquitination and that it acts upstream of the ubiquitination machinery. We found upregulation of heat shock proteins in C3KO muscles following challenge with a physiological condition that requires highly increased protein degradation. Furthermore, old C3KO mice show evidence of insoluble protein aggregate formation in skeletal muscles. These studies suggest that accumulation of aged and damaged proteins can lead to cellular toxicity and a cell stress response in C3KO muscles, and that these characteristics are pathological features of LGMD2A.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/ddi217 | DOI Listing |
FASEB J
July 2024
Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, Gainesville, Florida, USA.
bioRxiv
January 2024
Department of Applied Physiology and Kinesiology, College of Health and Human Performance, University of Florida, FL, USA.
Limb-Girdle Muscular Dystrophy 2A (LGMD2A) is caused by mutations in the gene encoding Calpain 3, a skeletal-muscle specific, Ca-dependent protease. Localization of Calpain 3 within the triad suggests it contributes to Ca homeostasis. Through live-cell Ca measurements, muscle mechanics, immunofluorescence, and electron microscopy (EM) in deficient (C3KO) and wildtype (WT) mice, we determined if loss of Calpain 3 altered Store-Operated Calcium Entry (SOCE) activity.
View Article and Find Full Text PDFFront Immunol
April 2022
Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
The innate immune system is rapidly activated during myocardial infarction and blockade of extracellular complement system reduces infarct size. Intracellular complement, however, appears to be closely linked to metabolic pathways and its role in ischemia-reperfusion injury is unknown and may be different from complement activation in the circulation. The purpose of the present study was to investigate the role of intracellular complement in isolated, retrogradely buffer-perfused hearts and cardiac cells from adult male wild type mice (WT) and from adult male mice with knockout of complement component 3 (C3KO).
View Article and Find Full Text PDFFront Cell Dev Biol
March 2022
Group of Neuroscience, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, Hospital Donostia, UPV/EHU, San Sebastian, Spain.
LGMDR1 is caused by mutations in the gene that encodes calpain 3 (CAPN3), a non-lysosomal cysteine protease necessary for proper muscle function. Our previous findings show that CAPN3 deficiency leads to reduced SERCA levels through increased protein degradation. This work investigates the potential contribution of the ubiquitin-proteasome pathway to increased SERCA degradation in LGMDR1.
View Article and Find Full Text PDFJ Physiol
September 2020
Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!