B cells play an essential role in the immune response. Upon activation they may differentiate into plasma cells that secrete specific antibodies against potentially pathogenic non-self antigens. To identify the cellular proteins that are important for efficient production of these antibodies we set out to study the B cell differentiation process at the proteome level. We performed an in-depth proteomic study to quantify dynamic relative protein expression patterns of several hundreds of proteins at five consecutive time points after lipopolysaccharide-induced activation of B lymphocytes. The proteome analysis was performed using a combination of stable isotope labeling using [13C6]leucine added to the murine B cell cultures, one-dimensional gel electrophoresis, and LC-MS/MS. In this study we identified 1,001 B cell proteins. We were able to quantify the expression levels of a quarter of all identified proteins (i.e. 234) at each of the five different time points. Nearly all proteins revealed changes in expression patterns. The quantitative dataset was further analyzed using an unbiased clustering method. Based on their expression profiles, we grouped the entire set of 234 quantified proteins into a limited number of 12 distinct clusters. Functionally related proteins showed a strong correlation in their temporal expression profiles. The quality of the quantitative data allowed us to even identify subclusters within functionally related classes of proteins such as in the endoplasmic reticulum proteins that are involved in antibody production.

Download full-text PDF

Source
http://dx.doi.org/10.1074/mcp.M500123-MCP200DOI Listing

Publication Analysis

Top Keywords

proteins
10
functionally proteins
8
cell differentiation
8
proteomic study
8
one-dimensional gel
8
gel electrophoresis
8
electrophoresis lc-ms/ms
8
stable isotope
8
isotope labeling
8
expression patterns
8

Similar Publications

variants in children with neurodevelopmental impairment are difficult to assess due to their heterogeneity and unclear pathogenic mechanisms. We describe a child with neonatal-onset epilepsy, developmental impairment of intermediate severity, and G256W heterozygosity. Analyzing prior KCNQ2 channel cryoelectron microscopy models revealed G256 as a node of an arch-shaped non-covalent bond network linking S5, the pore turret, and the ion path.

View Article and Find Full Text PDF

is a recently described species that can be differentiated from . However, in clinical settings, they are frequently misidentified as . In this study, our objective was to conduct genomic characterization and bioinformatics analysis of subsp.

View Article and Find Full Text PDF

The apoptosome, a critical protein complex in apoptosis regulation, relies on intricate interactions between its components, particularly the proteins containing the Caspase Activation and Recruitment Domain (CARD). This work presents a thorough computational analysis of the stability and specificity of CARD-CARD interactions within the apoptosome. Departing from available crystal structures, we identify important residues for the interaction between the CARD domains of Apaf-1 and Caspase-9.

View Article and Find Full Text PDF

The Oxidoreductase Retinol Saturase in Thyroid Gland Is Regulated by Hypothyroidism and Iodide Overload and Its Deletion Impairs Metabolic Homeostasis in Mice.

Antioxid Redox Signal

January 2025

Institute of Pharmacology, Max Rubner Center (MRC) for Cardiovascular Metabolic Renal Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.

Thyroid hormones (TH) are major regulators of cell differentiation, growth, and metabolic rate. TH synthesis in the thyroid gland requires high amounts of HO to oxidize iodide for the iodination of thyroglobulin (TG). Retinol Saturase (RetSat) is an oxidoreductase implicated in dihydroretinol formation and cellular sensitivity toward peroxides and ferroptosis.

View Article and Find Full Text PDF

Background: Overdose of acetaminophen (APAP), a commonly used antipyretic analgesic, can lead to severe liver injury and failure. Current treatments are only effective in the early stages of APAP-induced acute liver injury (ALI). Therefore, a detailed examination of the mechanisms involved in liver repair following APAP-induced ALI could provide valuable insights for clinical interventions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!