Decondensation of chromatin is essential to facilitate access to DNA metabolizing processes such as transcription and DNA repair. Disruption of histone-DNA contacts by histone modification or by ATP dependent chromatin remodelling allows DNA-binding proteins to compete with histones for DNA. The efficiency of global genome nucleotide excision repair (GGR) that removes a variety of helix distorting DNA lesions is known to be affected by chromatin structure most notably demonstrated by the slow repair of heterochromatin. In addition, the efficiency of GGR to repair lesions in transcriptionally active genes requires functional CSA and B proteins. We found that repair of UV-photolesions in both strands of the active adenosine deaminase gene was delayed in CS cells when compared to normal human fibroblasts. We suggest that the lack of transcription recovery characteristic for CS cells exposed to DNA damaging agents, might lead to changes in the chromatin structure of active genes, causing less efficient repair of lesions in these genes when compared to normal cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dnarep.2005.04.011 | DOI Listing |
BMC Biol
January 2025
CAS Key Laboratory of Marine Ecology and Environmental Sciences, and Center of Deep Sea Research, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
Background: Lindaspio polybranchiata, a member of the Spionidae family, has been reported at the Lingshui Cold Seep, where it formed a dense population around this nascent methane vent. We sequenced and assembled the genome of L. polybranchiata and performed comparative genomic analyses to investigate the genetic basis of adaptation to the deep sea.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
The synaptonemal complex (SC) is a protein-rich structure essential for meiotic recombination and faithful chromosome segregation. Acting like a zipper to paired homologous chromosomes during early prophase I, the complex is a symmetrical structure where central elements are connected on two sides by the transverse filaments to the chromatin-anchoring lateral elements. Despite being found in most major eukaryotic taxa implying a deeply conserved evolutionary origin, several components of the complex exhibit unusually high rates of sequence turnover.
View Article and Find Full Text PDFJ Gen Virol
January 2025
Division of Infection and Immunity, UCL, London, WC1E 6BT, UK.
Human immunodeficiency virus (HIV) is an exemplar virus, still the most studied and best understood and a model for mechanisms of viral replication, immune evasion and pathogenesis. In this review, we consider the earliest stages of HIV infection from transport of the virion contents through the cytoplasm to integration of the viral genome into host chromatin. We present a holistic model for the virus-host interaction during this pivotal stage of infection.
View Article and Find Full Text PDFThe eukaryotic genome is packaged into chromatin, which is composed of a nucleosomal filament that coils up to form more compact structures. Chromatin exists in two main forms: euchromatin, which is relatively decondensed and enriched in transcriptionally active genes, and heterochromatin, which is condensed and transcriptionally repressed . It is widely accepted that chromatin architecture modulates DNA accessibility, restricting the access of sequence-specific, gene-regulatory, transcription factors to the genome.
View Article and Find Full Text PDFChromatin remodeling enzymes play a crucial role in the organization of chromatin, enabling both stability and plasticity of genome regulation. These enzymes use a Snf2-type ATPase motor to move nucleosomes, but how they translocate DNA around the histone octamer is unclear. Here we use cryo-EM to visualize the continuous motion of nucleosomal DNA induced by human chromatin remodeler SNF2H, an ISWI family member.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!